def setupScreenShading(settings: inference.RenderSettings):
    shading = ScreenSpaceShading(device)
    shading.fov(settings.CAM_FOV)
    shading.ambient_light_color(np.array(settings.AMBIENT_LIGHT_COLOR))
    shading.diffuse_light_color(np.array(settings.DIFFUSE_LIGHT_COLOR))
    shading.specular_light_color(np.array(settings.SPECULAR_LIGHT_COLOR))
    shading.specular_exponent(settings.SPECULAR_EXPONENT)
    shading.light_direction(np.array(settings.LIGHT_DIRECTION))
    shading.material_color(np.array(settings.MATERIAL_COLOR))
    shading.ambient_occlusion(1.0)
    shading.inverse_ao = False
    return shading
    },
]
UPSCALING = 4
device = torch.device("cuda")

# create shading
shading = ScreenSpaceShading(device)
shading.fov(30)
shading.ambient_light_color(np.array([0.1, 0.1, 0.1]))
shading.diffuse_light_color(np.array([0.9, 0.9, 0.9]))
shading.specular_light_color(np.array([0.02, 0.02, 0.02]))
shading.specular_exponent(16)
shading.light_direction(np.array([0.1, 0.1, 1.0]))
shading.material_color(np.array([1.0, 1.0, 1.0]))
shading.ambient_occlusion(0.0)
shading.inverse_ao = False


# Load models
class SimpleUpsample(nn.Module):
    def __init__(self, upscale_factor, upsample, shading):
        super().__init__()
        self.upscale_factor = upscale_factor
        self.input_channels = 5
        self.output_channels = 6
        self.upsample = upsample
        self.shading = shading
        self.prev_input_channels = 6

    def forward(self, sample_low, previous_warped_flattened):
        inputs = sample_low[:, 0:self.input_channels, :, :]
 pg = ProgressBar(FRAMES_PER_ROTATION * ROTATIONS_PER_EXAMPLE,
                  'Dataset %d' % (i + 1),
                  length=50)
 previous_images = [None] * len(MODELS)
 for j in range(FRAMES_PER_ROTATION * ROTATIONS_PER_EXAMPLE):
     pg.print_progress_bar(j)
     img = np.copy(background)
     #send camera to renderer
     currentOrigin = camera.getOrigin()
     renderer.send_command(
         "cameraOrigin=%5.3f,%5.3f,%5.3f\n" %
         (currentOrigin[0], currentOrigin[1], currentOrigin[2]))
     #render models
     for k, m in enumerate(MODELS):
         #render
         shading.inverse_ao = False
         p = m['path']
         if p == MODEL_INPUT:
             renderer.send_command("resolution=%d,%d\n" %
                                   (CanvasWidthSmall, CanvasHeightSmall))
             renderer.send_command("aosamples=0\n")
             renderer.send_command("render\n")
             image = renderer.read_image(CanvasWidthSmall,
                                         CanvasHeightSmall)
             image = np.concatenate(
                 (
                     image[0:3, :, :],
                     image[3:4, :, :] * 2 - 1,  #transform mask into -1,+1
                     image[4:, :, :]),
                 axis=0)
             image_shaded_input = np.concatenate(
Exemplo n.º 4
0
def run():
    torch.ops.load_library("./Renderer.dll")

    #########################
    # CONFIGURATION
    #########################

    if 0:
        OUTPUT_FOLDER = "../result-stats/adaptiveIso2/"
        DATASET_PREFIX = "D:/VolumeSuperResolution-InputData/"
        DATASETS = [
            #("Ejecta", "gt-rendering-ejecta-v2-test.hdf5"),
            ("RM", "gt-rendering-rm-v1.hdf5"),
            #("Human", "gt-rendering-human-v1.hdf5"),
            #("Thorax", "gt-rendering-thorax-v1.hdf5"),
        ]

        NETWORK_DIR = "D:/VolumeSuperResolution/adaptive-modeldir/"
        NETWORKS = [  #suffixed with _importance.pt and _recon.pt
            #("adaptive011", "adaptive011_epoch500"), #title, file prefix
            ("adaptive019", "adaptive019_epoch470"),
            ("adaptive023", "adaptive023_epoch300")
        ]

        SAMPLING_FILE = "D:/VolumeSuperResolution-InputData/samplingPattern.hdf5"
        SAMPLING_PATTERNS = ['halton', 'plastic', 'random']

        HEATMAP_MIN = [0.01, 0.05, 0.2]
        HEATMAP_MEAN = [0.05, 0.1, 0.2, 0.5]

        UPSCALING = 8  # = networkUp * postUp

        IMPORTANCE_BORDER = 8
        LOSS_BORDER = 32
        BATCH_SIZE = 8

    elif 0:
        OUTPUT_FOLDER = "../result-stats/adaptiveIsoEnhance6/"
        DATASET_PREFIX = "D:/VolumeSuperResolution-InputData/"
        DATASETS = [
            ("Ejecta", "gt-rendering-ejecta-v2-test.hdf5"),
            #("RM", "gt-rendering-rm-v1.hdf5"),
            #("Human", "gt-rendering-human-v1.hdf5"),
            #("Thorax", "gt-rendering-thorax-v1.hdf5"),
            #("Head", "gt-rendering-head.hdf5"),
        ]

        NETWORK_DIR = "D:/VolumeSuperResolution/adaptive-modeldir/"
        NETWORKS = [  #suffixed with _importance.pt and _recon.pt
            #title, file prefix
            #("U-Net (5-4)", "sizes/size5-4_epoch500"),
            #("Enhance-Net (epoch 50)", "enhance2_imp050_epoch050"),
            #("Enhance-Net (epoch 400)", "enhance2_imp050_epoch400"),
            #("Enhance-Net (Thorax)", "enhance_imp050_Thorax_epoch200"),
            #("Enhance-Net (RM)", "enhance_imp050_RM_epoch200"),
            #("Imp100", "enhance4_imp100_epoch300"),
            #("Imp100res", "enhance4_imp100res_epoch230"),
            ("Imp100res+N", "enhance4_imp100res+N_epoch300"),
            ("Imp100+N", "enhance4_imp100+N_epoch300"),
            #("Imp100+N-res", "enhance4_imp100+N-res_epoch300"),
            #("Imp100+N-resInterp", "enhance4_imp100+N-resInterp_epoch300"),
            #("U-Net (5-4)", "size5-4_epoch500"),
            #("U-Net (5-3)", "size5-3_epoch500"),
            #("U-Net (4-4)", "size4-4_epoch500"),
        ]

        # Test if it is better to post-train with dense networks and PDE inpainting
        POSTTRAIN_NETWORK_DIR = "D:/VolumeSuperResolution/dense-modeldir/"
        POSTTRAIN_NETWORKS = [
            # title, file suffix to POSTTRAIN_NETWORK_DIR, inpainting {'fast', 'pde'}
            #("Enhance PDE (post)", "inpHv2-pde05-epoch200.pt", "pde")
        ]

        SAMPLING_FILE = "D:/VolumeSuperResolution-InputData/samplingPattern.hdf5"
        SAMPLING_PATTERNS = ['plastic']

        HEATMAP_MIN = [0.002]
        HEATMAP_MEAN = [
            0.05
        ]  #[0.01, 0.02, 0.03, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.5, 0.8, 1.0]
        USE_BINARY_SEARCH_ON_MEAN = True

        UPSCALING = 8  # = networkUp * postUp

        IMPORTANCE_BORDER = 8
        LOSS_BORDER = 32
        BATCH_SIZE = 4

    elif 0:
        OUTPUT_FOLDER = "../result-stats/adaptiveIsoEnhance5Sampling/"
        DATASET_PREFIX = "D:/VolumeSuperResolution-InputData/"
        DATASETS = [
            ("Ejecta", "gt-rendering-ejecta-v2-test.hdf5"),
        ]

        NETWORK_DIR = "D:/VolumeSuperResolution/adaptive-modeldir/"
        NETWORKS = [  #suffixed with _importance.pt and _recon.pt
            #title, file prefix
            ("Enhance-Net (epoch 400)", "enhance2_imp050_epoch400"),
        ]

        # Test if it is better to post-train with dense networks and PDE inpainting
        POSTTRAIN_NETWORK_DIR = "D:/VolumeSuperResolution/dense-modeldir/"
        POSTTRAIN_NETWORKS = [
            # title, file suffix to POSTTRAIN_NETWORK_DIR, inpainting {'fast', 'pde'}
            #("Enhance PDE (post)", "inpHv2-pde05-epoch200.pt", "pde")
        ]

        SAMPLING_FILE = "D:/VolumeSuperResolution-InputData/samplingPattern.hdf5"
        SAMPLING_PATTERNS = ['halton', 'plastic', 'random', 'regular']
        #SAMPLING_PATTERNS = ['regular']

        HEATMAP_MIN = [0.002]
        HEATMAP_MEAN = [0.05]
        USE_BINARY_SEARCH_ON_MEAN = True

        UPSCALING = 8  # = networkUp * postUp

        IMPORTANCE_BORDER = 8
        LOSS_BORDER = 32
        BATCH_SIZE = 4

    elif 1:
        OUTPUT_FOLDER = "../result-stats/adaptiveIsoEnhance8Sampling/"
        DATASET_PREFIX = "D:/VolumeSuperResolution-InputData/"
        DATASETS = [
            ("Ejecta", "gt-rendering-ejecta-v2-test.hdf5"),
            #("RM", "gt-rendering-rm-v1.hdf5"),
            #("Human", "gt-rendering-human-v1.hdf5"),
            #("Thorax", "gt-rendering-thorax-v1.hdf5"),
            #("Head", "gt-rendering-head.hdf5"),
        ]

        NETWORK_DIR = "D:/VolumeSuperResolution/adaptive-modeldir/"
        NETWORKS = [  #suffixed with _importance.pt and _recon.pt
            #title, file prefix
            ("regular", "enhance7_regular_epoch190"),
            ("random", "enhance7_random_epoch190"),
            ("halton", "enhance7_halton_epoch190"),
            ("plastic", "enhance7_plastic_epoch190"),
        ]

        # Test if it is better to post-train with dense networks and PDE inpainting
        POSTTRAIN_NETWORK_DIR = "D:/VolumeSuperResolution/dense-modeldir/"
        POSTTRAIN_NETWORKS = [
            # title, file suffix to POSTTRAIN_NETWORK_DIR, inpainting {'fast', 'pde'}
            #("Enhance PDE (post)", "inpHv2-pde05-epoch200.pt", "pde")
        ]

        SAMPLING_FILE = "D:/VolumeSuperResolution-InputData/samplingPattern.hdf5"
        SAMPLING_PATTERNS = ['regular', 'random', 'halton', 'plastic']

        HEATMAP_MIN = [0.002]
        HEATMAP_MEAN = [
            0.05
        ]  #[0.01, 0.02, 0.03, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.5, 0.8, 1.0]
        USE_BINARY_SEARCH_ON_MEAN = True

        UPSCALING = 8  # = networkUp * postUp

        IMPORTANCE_BORDER = 8
        LOSS_BORDER = 32
        BATCH_SIZE = 4

    elif 0:
        OUTPUT_FOLDER = "../result-stats/adaptiveIsoImp/"
        DATASET_PREFIX = "D:/VolumeSuperResolution-InputData/"
        DATASETS = [
            ("Ejecta", "gt-rendering-ejecta-v2-test.hdf5"),
            #("RM", "gt-rendering-rm-v1.hdf5"),
            #("Human", "gt-rendering-human-v1.hdf5"),
            #("Thorax", "gt-rendering-thorax-v1.hdf5"),
        ]

        NETWORK_DIR = "D:/VolumeSuperResolution/adaptive-modeldir/imp/"
        NETWORKS = [  #suffixed with _importance.pt and _recon.pt
            #("adaptive011", "adaptive011_epoch500"), #title, file prefix
            ("imp005", "imp005_epoch500"),
            ("imp010", "imp010_epoch500"),
            ("imp020", "imp020_epoch500"),
            ("imp050", "imp050_epoch500"),
        ]

        SAMPLING_FILE = "D:/VolumeSuperResolution-InputData/samplingPattern.hdf5"
        SAMPLING_PATTERNS = ['halton']

        HEATMAP_MIN = [0.002]
        HEATMAP_MEAN = [0.005, 0.01, 0.02, 0.05, 0.1]
        USE_BINARY_SEARCH_ON_MEAN = True

        UPSCALING = 8  # = networkUp * postUp

        IMPORTANCE_BORDER = 8
        LOSS_BORDER = 32
        BATCH_SIZE = 16

    #########################
    # LOADING
    #########################

    device = torch.device("cuda")

    # Load Networks
    IMPORTANCE_BASELINE1 = "ibase1"
    IMPORTANCE_BASELINE2 = "ibase2"
    IMPORTANCE_BASELINE3 = "ibase3"
    RECON_BASELINE = "rbase"

    # load importance model
    print("load importance networks")

    class ImportanceModel:
        def __init__(self, file):
            if file == IMPORTANCE_BASELINE1:
                self._net = importance.UniformImportanceMap(1, 0.5)
                self._upscaling = 1
                self._name = "constant"
                self.disableTemporal = True
                self._requiresPrevious = False
            elif file == IMPORTANCE_BASELINE2:
                self._net = importance.GradientImportanceMap(
                    1, (1, 1), (2, 1), (3, 1))
                self._upscaling = 1
                self._name = "curvature"
                self.disableTemporal = True
                self._requiresPrevious = False
            else:
                self._name = file[0]
                file = os.path.join(NETWORK_DIR, file[1] + "_importance.pt")
                extra_files = torch._C.ExtraFilesMap()
                extra_files['settings.json'] = ""
                self._net = torch.jit.load(file,
                                           map_location=device,
                                           _extra_files=extra_files)
                settings = json.loads(extra_files['settings.json'])
                self._upscaling = settings['networkUpscale']
                self._requiresPrevious = settings.get("requiresPrevious",
                                                      False)
                self.disableTemporal = settings.get("disableTemporal", True)

        def networkUpscaling(self):
            return self._upscaling

        def name(self):
            return self._name

        def __repr__(self):
            return self.name()

        def call(self, input, prev_warped_out):
            if self._requiresPrevious:
                input = torch.cat([
                    input,
                    models.VideoTools.flatten_high(prev_warped_out,
                                                   self._upscaling)
                ],
                                  dim=1)
            input = F.pad(input, [IMPORTANCE_BORDER] * 4, 'constant', 0)
            output = self._net(input)  # the network call
            output = F.pad(output, [-IMPORTANCE_BORDER * self._upscaling] * 4,
                           'constant', 0)
            return output

    class LuminanceImportanceModel:
        def __init__(self):
            self.disableTemporal = True

        def setTestFile(self, filename):
            importance_file = filename[:-5] + "-luminanceImportance.hdf5"
            if os.path.exists(importance_file):
                self._exist = True
                self._file = h5py.File(importance_file, 'r')
                self._dset = self._file['importance']
            else:
                self._exist = False
                self._file = None
                self._dset = None

        def isAvailable(self):
            return self._exist

        def setIndices(self, indices: torch.Tensor):
            assert len(indices.shape) == 1
            self._indices = list(indices.cpu().numpy())

        def setTime(self, time):
            self._time = time

        def networkUpscaling(self):
            return UPSCALING

        def name(self):
            return "luminance-contrast"

        def __repr__(self):
            return self.name()

        def call(self, input, prev_warped_out):
            B, C, H, W = input.shape
            if not self._exist:
                return torch.ones(B,
                                  1,
                                  H,
                                  W,
                                  dtype=input.dtype,
                                  device=input.device)
            outputs = []
            for idx in self._indices:
                outputs.append(
                    torch.from_numpy(self._dset[idx, self._time,
                                                ...]).to(device=input.device))
            return torch.stack(outputs, dim=0)

    importanceBaseline1 = ImportanceModel(IMPORTANCE_BASELINE1)
    importanceBaseline2 = ImportanceModel(IMPORTANCE_BASELINE2)
    importanceBaselineLuminance = LuminanceImportanceModel()
    importanceModels = [ImportanceModel(f) for f in NETWORKS]

    # load reconstruction networks
    print("load reconstruction networks")

    class ReconstructionModel:
        def __init__(self, file):
            if file == RECON_BASELINE:

                class Inpainting(nn.Module):
                    def forward(self, x, mask):
                        input = x[:, 0:6, :, :].contiguous(
                        )  # mask, normal xyz, depth, ao
                        mask = x[:, 6, :, :].contiguous()
                        return torch.ops.renderer.fast_inpaint(mask, input)

                self._net = Inpainting()
                self._upscaling = 1
                self._name = "inpainting"
                self.disableTemporal = True
            else:
                self._name = file[0]
                file = os.path.join(NETWORK_DIR, file[1] + "_recon.pt")
                extra_files = torch._C.ExtraFilesMap()
                extra_files['settings.json'] = ""
                self._net = torch.jit.load(file,
                                           map_location=device,
                                           _extra_files=extra_files)
                self._settings = json.loads(extra_files['settings.json'])
                self.disableTemporal = False
                requiresMask = self._settings.get('expectMask', False)
                if self._settings.get("interpolateInput", False):
                    self._originalNet = self._net

                    class Inpainting2(nn.Module):
                        def __init__(self, orignalNet, requiresMask):
                            super().__init__()
                            self._n = orignalNet
                            self._requiresMask = requiresMask

                        def forward(self, x, mask):
                            input = x[:, 0:6, :, :].contiguous(
                            )  # mask, normal xyz, depth, ao
                            mask = x[:, 6, :, :].contiguous()
                            inpainted = torch.ops.renderer.fast_inpaint(
                                mask, input)
                            x[:, 0:6, :, :] = inpainted
                            if self._requiresMask:
                                return self._n(x, mask)
                            else:
                                return self._n(x)

                    self._net = Inpainting2(self._originalNet, requiresMask)

        def name(self):
            return self._name

        def __repr__(self):
            return self.name()

        def call(self, input, mask, prev_warped_out):
            input = torch.cat([input, prev_warped_out], dim=1)
            output = self._net(input, mask)
            return output

    class ReconstructionModelPostTrain:
        """
        Reconstruction model that are trained as dense reconstruction networks
        after the adaptive training.
        They don't recive the sampling mask as input, but can start with PDE-based inpainting
        """
        def __init__(self, name: str, model_path: str, inpainting: str):
            assert inpainting == 'fast' or inpainting == 'pde', "inpainting must be either 'fast' or 'pde', but got %s" % inpainting
            self._inpainting = inpainting

            self._name = name
            file = os.path.join(POSTTRAIN_NETWORK_DIR, model_path)
            extra_files = torch._C.ExtraFilesMap()
            extra_files['settings.json'] = ""
            self._net = torch.jit.load(file,
                                       map_location=device,
                                       _extra_files=extra_files)
            self._settings = json.loads(extra_files['settings.json'])
            assert self._settings.get(
                'upscale_factor', None) == 1, "selected file is not a 1x SRNet"
            self.disableTemporal = False

        def name(self):
            return self._name

        def __repr__(self):
            return self.name()

        def call(self, input, prev_warped_out):
            # no sampling and no AO
            input_no_sampling = input[:, 0:5, :, :].contiguous(
            )  # mask, normal xyz, depth
            sampling_mask = input[:, 6, :, :].contiguous()
            # perform inpainting
            if self._inpainting == 'pde':
                inpainted = torch.ops.renderer.pde_inpaint(
                    sampling_mask,
                    input_no_sampling,
                    200,
                    1e-4,
                    5,
                    2,  # m0, epsilon, m1, m2
                    0,  # mc -> multigrid recursion count. =0 disables the multigrid hierarchy
                    9,
                    0)  # ms, m3
            else:
                inpainted = torch.ops.renderer.fast_inpaint(
                    sampling_mask, input_no_sampling)
            # run network
            input = torch.cat([inpainted, prev_warped_out], dim=1)
            output = self._net(input)
            if isinstance(output, tuple):
                output = output[0]
            return output

    reconBaseline = ReconstructionModel(RECON_BASELINE)
    reconModels = [ReconstructionModel(f) for f in NETWORKS]
    reconPostModels = [
        ReconstructionModelPostTrain(name, file, inpainting)
        for (name, file, inpainting) in POSTTRAIN_NETWORKS
    ]
    allReconModels = reconModels + reconPostModels

    NETWORK_COMBINATIONS = \
        [(importanceBaseline1, reconBaseline), (importanceBaseline2, reconBaseline)] + \
        [(importanceBaselineLuminance, reconBaseline)] + \
        [(importanceBaseline1, reconNet) for reconNet in allReconModels] + \
        [(importanceBaseline2, reconNet) for reconNet in allReconModels] + \
        [(importanceBaselineLuminance, reconNet) for reconNet in allReconModels] + \
        [(importanceNet, reconBaseline) for importanceNet in importanceModels] + \
        list(zip(importanceModels, reconModels)) + \
        [(importanceNet, reconPostModel) for importanceNet in importanceModels for reconPostModel in reconPostModels]
    #NETWORK_COMBINATIONS = list(zip(importanceModels, reconModels))
    print("Network combinations:")
    for (i, r) in NETWORK_COMBINATIONS:
        print("  %s - %s" % (i.name(), r.name()))

    # load sampling patterns
    print("load sampling patterns")
    with h5py.File(SAMPLING_FILE, 'r') as f:
        sampling_pattern = dict([(name, torch.from_numpy(f[name][...]).to(device)) \
            for name in SAMPLING_PATTERNS])

    # create shading
    shading = ScreenSpaceShading(device)
    shading.fov(30)
    shading.ambient_light_color(np.array([0.1, 0.1, 0.1]))
    shading.diffuse_light_color(np.array([1.0, 1.0, 1.0]))
    shading.specular_light_color(np.array([0.0, 0.0, 0.0]))
    shading.specular_exponent(16)
    shading.light_direction(np.array([0.1, 0.1, 1.0]))
    shading.material_color(np.array([1.0, 0.3, 0.0]))
    AMBIENT_OCCLUSION_STRENGTH = 1.0
    shading.ambient_occlusion(1.0)
    shading.inverse_ao = False

    #heatmap
    HEATMAP_CFG = [(min, mean) for min in HEATMAP_MIN for mean in HEATMAP_MEAN
                   if min < mean]
    print("heatmap configs:", HEATMAP_CFG)

    #########################
    # DEFINE STATISTICS
    #########################
    ssimLoss = SSIM(size_average=False)
    ssimLoss.to(device)
    psnrLoss = PSNR()
    psnrLoss.to(device)
    lpipsColor = lpips.PerceptualLoss(model='net-lin',
                                      net='alex',
                                      use_gpu=True)
    MIN_FILLING = 0.05
    NUM_BINS = 200

    class Statistics:
        def __init__(self):
            self.histogram_color_withAO = np.zeros(NUM_BINS, dtype=np.float64)
            self.histogram_color_noAO = np.zeros(NUM_BINS, dtype=np.float64)
            self.histogram_depth = np.zeros(NUM_BINS, dtype=np.float64)
            self.histogram_normal = np.zeros(NUM_BINS, dtype=np.float64)
            self.histogram_mask = np.zeros(NUM_BINS, dtype=np.float64)
            self.histogram_ao = np.zeros(NUM_BINS, dtype=np.float64)
            self.histogram_counter = 0

        def create_datasets(self, hdf5_file: h5py.File, stats_name: str,
                            histo_name: str, num_samples: int,
                            extra_info: dict):

            self.expected_num_samples = num_samples
            stats_shape = (num_samples, len(list(StatField)))
            self.stats_file = hdf5_file.require_dataset(stats_name,
                                                        stats_shape,
                                                        dtype='f',
                                                        exact=True)
            self.stats_file.attrs['NumFields'] = len(list(StatField))
            for field in list(StatField):
                self.stats_file.attrs['Field%d' % field.value] = field.name
            for key, value in extra_info.items():
                self.stats_file.attrs[key] = value
            self.stats_index = 0

            histo_shape = (NUM_BINS, len(list(HistoField)))
            self.histo_file = hdf5_file.require_dataset(histo_name,
                                                        histo_shape,
                                                        dtype='f',
                                                        exact=True)
            self.histo_file.attrs['NumFields'] = len(list(HistoField))
            for field in list(HistoField):
                self.histo_file.attrs['Field%d' % field.value] = field.name
            for key, value in extra_info.items():
                self.histo_file.attrs[key] = value

        def add_timestep_sample(self, pred_mnda, gt_mnda, sampling_mask):
            """
            adds a timestep sample:
            pred_mnda: prediction: mask, normal, depth, AO
            gt_mnda: ground truth: mask, normal, depth, AO
            """
            B = pred_mnda.shape[0]

            #shading
            shading.ambient_occlusion(AMBIENT_OCCLUSION_STRENGTH)
            pred_color_withAO = shading(pred_mnda)
            gt_color_withAO = shading(gt_mnda)
            shading.ambient_occlusion(0.0)
            pred_color_noAO = shading(pred_mnda)
            gt_color_noAO = shading(gt_mnda)

            #apply border
            pred_mnda = pred_mnda[:, :, LOSS_BORDER:-LOSS_BORDER,
                                  LOSS_BORDER:-LOSS_BORDER]
            pred_color_withAO = pred_color_withAO[:, :,
                                                  LOSS_BORDER:-LOSS_BORDER,
                                                  LOSS_BORDER:-LOSS_BORDER]
            pred_color_noAO = pred_color_noAO[:, :, LOSS_BORDER:-LOSS_BORDER,
                                              LOSS_BORDER:-LOSS_BORDER]
            gt_mnda = gt_mnda[:, :, LOSS_BORDER:-LOSS_BORDER,
                              LOSS_BORDER:-LOSS_BORDER]
            gt_color_withAO = gt_color_withAO[:, :, LOSS_BORDER:-LOSS_BORDER,
                                              LOSS_BORDER:-LOSS_BORDER]
            gt_color_noAO = gt_color_noAO[:, :, LOSS_BORDER:-LOSS_BORDER,
                                          LOSS_BORDER:-LOSS_BORDER]

            mask = gt_mnda[:, 0:1, :, :] * 0.5 + 0.5

            # PSNR
            psnr_mask = psnrLoss(pred_mnda[:, 0:1, :, :],
                                 gt_mnda[:, 0:1, :, :]).cpu().numpy()
            psnr_normal = psnrLoss(pred_mnda[:, 1:4, :, :],
                                   gt_mnda[:, 1:4, :, :],
                                   mask=mask).cpu().numpy()
            psnr_depth = psnrLoss(pred_mnda[:, 4:5, :, :],
                                  gt_mnda[:, 4:5, :, :],
                                  mask=mask).cpu().numpy()
            psnr_ao = psnrLoss(pred_mnda[:, 5:6, :, :],
                               gt_mnda[:, 5:6, :, :],
                               mask=mask).cpu().numpy()
            psnr_color_withAO = psnrLoss(pred_color_withAO,
                                         gt_color_withAO,
                                         mask=mask).cpu().numpy()
            psnr_color_noAO = psnrLoss(pred_color_noAO,
                                       gt_color_noAO,
                                       mask=mask).cpu().numpy()

            # SSIM
            ssim_mask = ssimLoss(pred_mnda[:, 0:1, :, :],
                                 gt_mnda[:, 0:1, :, :]).cpu().numpy()
            pred_mnda = gt_mnda + mask * (pred_mnda - gt_mnda)
            ssim_normal = ssimLoss(pred_mnda[:, 1:4, :, :],
                                   gt_mnda[:, 1:4, :, :]).cpu().numpy()
            ssim_depth = ssimLoss(pred_mnda[:, 4:5, :, :],
                                  gt_mnda[:, 4:5, :, :]).cpu().numpy()
            ssim_ao = ssimLoss(pred_mnda[:, 5:6, :, :],
                               gt_mnda[:, 5:6, :, :]).cpu().numpy()
            ssim_color_withAO = ssimLoss(pred_color_withAO,
                                         gt_color_withAO).cpu().numpy()
            ssim_color_noAO = ssimLoss(pred_color_noAO,
                                       gt_color_noAO).cpu().numpy()

            # Perceptual
            lpips_color_withAO = torch.cat([
                lpipsColor(
                    pred_color_withAO[b], gt_color_withAO[b], normalize=True)
                for b in range(B)
            ],
                                           dim=0).cpu().numpy()
            lpips_color_noAO = torch.cat([
                lpipsColor(
                    pred_color_noAO[b], gt_color_noAO[b], normalize=True)
                for b in range(B)
            ],
                                         dim=0).cpu().numpy()

            # Samples
            samples = torch.mean(sampling_mask, dim=(1, 2, 3)).cpu().numpy()

            # Write samples to file
            for b in range(B):
                assert self.stats_index < self.expected_num_samples, "Adding more samples than specified"
                self.stats_file[self.stats_index, :] = np.array([
                    psnr_mask[b], psnr_normal[b], psnr_depth[b], psnr_ao[b],
                    psnr_color_noAO[b], psnr_color_withAO[b], ssim_mask[b],
                    ssim_normal[b], ssim_depth[b], ssim_ao[b],
                    ssim_color_noAO[b], ssim_color_withAO[b],
                    lpips_color_noAO[b], lpips_color_withAO[b], samples[b]
                ],
                                                                dtype='f')
                self.stats_index += 1

            # Histogram
            self.histogram_counter += 1

            mask_diff = F.l1_loss(gt_mnda[:, 0, :, :],
                                  pred_mnda[:, 0, :, :],
                                  reduction='none')
            histogram, _ = np.histogram(mask_diff.cpu().numpy(),
                                        bins=NUM_BINS,
                                        range=(0, 1),
                                        density=True)
            self.histogram_mask += (
                histogram /
                (NUM_BINS * B) - self.histogram_mask) / self.histogram_counter

            #normal_diff = (-F.cosine_similarity(gt_mnda[0,1:4,:,:], pred_mnda[0,1:4,:,:], dim=0)+1)/2
            normal_diff = F.l1_loss(gt_mnda[:, 1:4, :, :],
                                    pred_mnda[:, 1:4, :, :],
                                    reduction='none').sum(dim=0) / 6
            histogram, _ = np.histogram(normal_diff.cpu().numpy(),
                                        bins=NUM_BINS,
                                        range=(0, 1),
                                        density=True)
            self.histogram_normal += (histogram /
                                      (NUM_BINS * B) - self.histogram_normal
                                      ) / self.histogram_counter

            depth_diff = F.l1_loss(gt_mnda[:, 4, :, :],
                                   pred_mnda[:, 4, :, :],
                                   reduction='none')
            histogram, _ = np.histogram(depth_diff.cpu().numpy(),
                                        bins=NUM_BINS,
                                        range=(0, 1),
                                        density=True)
            self.histogram_depth += (
                histogram /
                (NUM_BINS * B) - self.histogram_depth) / self.histogram_counter

            ao_diff = F.l1_loss(gt_mnda[:, 5, :, :],
                                pred_mnda[:, 5, :, :],
                                reduction='none')
            histogram, _ = np.histogram(ao_diff.cpu().numpy(),
                                        bins=NUM_BINS,
                                        range=(0, 1),
                                        density=True)
            self.histogram_ao += (histogram / (NUM_BINS * B) -
                                  self.histogram_ao) / self.histogram_counter

            color_diff = F.l1_loss(gt_color_withAO[:, 0, :, :],
                                   pred_color_withAO[:, 0, :, :],
                                   reduction='none')
            histogram, _ = np.histogram(color_diff.cpu().numpy(),
                                        bins=NUM_BINS,
                                        range=(0, 1),
                                        density=True)
            self.histogram_color_withAO += (
                histogram / (NUM_BINS * B) -
                self.histogram_color_withAO) / self.histogram_counter

            color_diff = F.l1_loss(gt_color_noAO[:, 0, :, :],
                                   pred_color_noAO[:, 0, :, :],
                                   reduction='none')
            histogram, _ = np.histogram(color_diff.cpu().numpy(),
                                        bins=NUM_BINS,
                                        range=(0, 1),
                                        density=True)
            self.histogram_color_noAO += (
                histogram / (NUM_BINS * B) -
                self.histogram_color_noAO) / self.histogram_counter

        def close_stats_file(self):
            self.stats_file.attrs['NumEntries'] = self.stats_index

        def write_histogram(self):
            """
            After every sample for the current dataset was processed, write
            a histogram of the errors in a new file
            """
            for i in range(NUM_BINS):
                self.histo_file[i, :] = np.array([
                    i / NUM_BINS, (i + 1) / NUM_BINS, self.histogram_mask[i],
                    self.histogram_normal[i], self.histogram_depth[i],
                    self.histogram_ao[i], self.histogram_color_withAO[i],
                    self.histogram_color_noAO[i]
                ])

    #########################
    # DATASET
    #########################
    class FullResDataset(torch.utils.data.Dataset):
        def __init__(self, file):
            self.hdf5_file = h5py.File(file, 'r')
            self.dset = self.hdf5_file['gt']
            print("Dataset shape:", self.dset.shape)

        def __len__(self):
            return self.dset.shape[0]

        def num_timesteps(self):
            return self.dset.shape[1]

        def __getitem__(self, idx):
            return (self.dset[idx, ...], np.array(idx))

    #########################
    # COMPUTE STATS for each dataset
    #########################
    for dataset_name, dataset_file in DATASETS:
        dataset_file = os.path.join(DATASET_PREFIX, dataset_file)
        print("Compute statistics for", dataset_name)

        # init luminance importance map
        importanceBaselineLuminance.setTestFile(dataset_file)
        if importanceBaselineLuminance.isAvailable():
            print("Luminance-contrast importance map is available")

        # create output file
        os.makedirs(OUTPUT_FOLDER, exist_ok=True)
        output_file = os.path.join(OUTPUT_FOLDER, dataset_name + '.hdf5')
        print("Save to", output_file)
        with h5py.File(output_file, 'a') as output_hdf5_file:

            # load dataset
            set = FullResDataset(dataset_file)
            data_loader = torch.utils.data.DataLoader(set,
                                                      batch_size=BATCH_SIZE,
                                                      shuffle=False)

            # define statistics
            StatsCfg = collections.namedtuple(
                "StatsCfg", "stats importance recon heatmin heatmean pattern")
            statistics = []
            for (inet, rnet) in NETWORK_COMBINATIONS:
                for (heatmin, heatmean) in HEATMAP_CFG:
                    for pattern in SAMPLING_PATTERNS:
                        stats_info = {
                            'importance': inet.name(),
                            'reconstruction': rnet.name(),
                            'heatmin': heatmin,
                            'heatmean': heatmean,
                            'pattern': pattern
                        }
                        stats_filename = "Stats_%s_%s_%03d_%03d_%s" % (
                            inet.name(), rnet.name(), heatmin * 100,
                            heatmean * 100, pattern)
                        histo_filename = "Histogram_%s_%s_%03d_%03d_%s" % (
                            inet.name(), rnet.name(), heatmin * 100,
                            heatmean * 100, pattern)
                        s = Statistics()
                        s.create_datasets(output_hdf5_file, stats_filename,
                                          histo_filename,
                                          len(set) * set.num_timesteps(),
                                          stats_info)
                        statistics.append(
                            StatsCfg(stats=s,
                                     importance=inet,
                                     recon=rnet,
                                     heatmin=heatmin,
                                     heatmean=heatmean,
                                     pattern=pattern))
            print(len(statistics),
                  " different combinations are performed per sample")

            # compute statistics
            try:
                with torch.no_grad():
                    num_minibatch = len(data_loader)
                    pg = ProgressBar(num_minibatch, 'Evaluation', length=50)
                    for iteration, (batch, batch_indices) in enumerate(
                            data_loader, 0):
                        pg.print_progress_bar(iteration)
                        batch = batch.to(device)
                        importanceBaselineLuminance.setIndices(batch_indices)
                        B, T, C, H, W = batch.shape

                        # try out each combination
                        for s in statistics:
                            #print(s)
                            # get input to evaluation
                            importanceNetUpscale = s.importance.networkUpscaling(
                            )
                            importancePostUpscale = UPSCALING // importanceNetUpscale
                            crop_low = torch.nn.functional.interpolate(
                                batch.reshape(B * T, C, H, W),
                                scale_factor=1 / UPSCALING,
                                mode='area').reshape(B, T, C, H // UPSCALING,
                                                     W // UPSCALING)
                            pattern = sampling_pattern[s.pattern][:H, :W]
                            crop_high = batch

                            # loop over timesteps
                            pattern = pattern.unsqueeze(0).unsqueeze(0)
                            previous_importance = None
                            previous_output = None
                            reconstructions = []
                            for j in range(T):
                                importanceBaselineLuminance.setTime(j)
                                # extract flow (always the last two channels of crop_high)
                                flow = crop_high[:, j, C - 2:, :, :]

                                # compute importance map
                                importance_input = crop_low[:, j, :5, :, :]
                                if j == 0 or s.importance.disableTemporal:
                                    previous_input = torch.zeros(
                                        B,
                                        1,
                                        importance_input.shape[2] *
                                        importanceNetUpscale,
                                        importance_input.shape[3] *
                                        importanceNetUpscale,
                                        dtype=crop_high.dtype,
                                        device=crop_high.device)
                                else:
                                    flow_low = F.interpolate(
                                        flow,
                                        scale_factor=1 / importancePostUpscale)
                                    previous_input = models.VideoTools.warp_upscale(
                                        previous_importance, flow_low, 1,
                                        False)
                                importance_map = s.importance.call(
                                    importance_input, previous_input)
                                if len(importance_map.shape) == 3:
                                    importance_map = importance_map.unsqueeze(
                                        1)
                                previous_importance = importance_map

                                target_mean = s.heatmean
                                if USE_BINARY_SEARCH_ON_MEAN:
                                    # For regular sampling, the normalization does not work properly,
                                    # use binary search on the heatmean instead
                                    def f(x):
                                        postprocess = importance.PostProcess(
                                            s.heatmin, x,
                                            importancePostUpscale,
                                            LOSS_BORDER //
                                            importancePostUpscale, 'basic')
                                        importance_map2 = postprocess(
                                            importance_map)[0].unsqueeze(1)
                                        sampling_mask = (
                                            importance_map2 >= pattern).to(
                                                dtype=importance_map.dtype)
                                        samples = torch.mean(
                                            sampling_mask).item()
                                        return samples

                                    target_mean = binarySearch(
                                        f, s.heatmean, s.heatmean, 10, 0, 1)
                                    #print("Binary search for #samples, mean start={}, result={} with samples={}, original={}".
                                    #      format(s.heatmean, s.heatmean, f(target_mean), f(s.heatmean)))

                                # normalize and upscale importance map
                                postprocess = importance.PostProcess(
                                    s.heatmin, target_mean,
                                    importancePostUpscale,
                                    LOSS_BORDER // importancePostUpscale,
                                    'basic')
                                importance_map = postprocess(
                                    importance_map)[0].unsqueeze(1)
                                #print("mean:", torch.mean(importance_map).item())

                                # create samples
                                sample_mask = (importance_map >= pattern).to(
                                    dtype=importance_map.dtype)

                                reconstruction_input = torch.cat(
                                    (
                                        sample_mask *
                                        crop_high[:, j, 0:
                                                  5, :, :],  # mask, normal x, normal y, normal z, depth
                                        sample_mask * torch.ones(
                                            B,
                                            1,
                                            H,
                                            W,
                                            dtype=crop_high.dtype,
                                            device=crop_high.device),  # ao
                                        sample_mask),  # sample mask
                                    dim=1)

                                # warp previous output
                                if j == 0 or s.recon.disableTemporal:
                                    previous_input = torch.zeros(
                                        B,
                                        6,
                                        H,
                                        W,
                                        dtype=crop_high.dtype,
                                        device=crop_high.device)
                                else:
                                    previous_input = models.VideoTools.warp_upscale(
                                        previous_output, flow, 1, False)

                                # run reconstruction network
                                reconstruction = s.recon.call(
                                    reconstruction_input, sample_mask,
                                    previous_input)

                                # clamp
                                reconstruction_clamped = torch.cat(
                                    [
                                        torch.clamp(
                                            reconstruction[:, 0:1, :, :], -1,
                                            +1),  # mask
                                        ScreenSpaceShading.normalize(
                                            reconstruction[:, 1:4, :, :],
                                            dim=1),
                                        torch.clamp(
                                            reconstruction[:, 4:5, :, :], 0,
                                            +1),  # depth
                                        torch.clamp(reconstruction[:,
                                                                   5:6, :, :],
                                                    0, +1)  # ao
                                    ],
                                    dim=1)
                                reconstructions.append(reconstruction_clamped)

                                # save for next frame
                                previous_output = reconstruction_clamped

                            #endfor: timesteps

                            # compute statistics
                            reconstructions = torch.cat(reconstructions, dim=0)
                            crops_high = torch.cat(
                                [crop_high[:, j, :6, :, :] for j in range(T)],
                                dim=0)
                            sample_masks = torch.cat([sample_mask] * T, dim=0)
                            s.stats.add_timestep_sample(
                                reconstructions, crops_high, sample_masks)

                        # endfor: statistic
                    # endfor: batch

                    pg.print_progress_bar(num_minibatch)
                # end no_grad()
            finally:
                # close files
                for s in statistics:
                    s.stats.write_histogram()
                    s.stats.close_stats_file()