Exemplo n.º 1
0
 def updateHistory(self):
     if (self.init_history is True) and (self.trueX is not None):
         self.t0_est = np.array([self.cur_t[0], self.cur_t[1], self.cur_t[2]])  # starting translation 
         self.t0_gt  = np.array([self.trueX, self.trueY, self.trueZ])           # starting translation 
         self.init_history = False 
     if (self.t0_est is not None) and (self.t0_gt is not None):             
         p = [self.cur_t[0]-self.t0_est[0], self.cur_t[1]-self.t0_est[1], self.cur_t[2]-self.t0_est[2]]   # the estimated traj starts at 0
         self.traj3d_est.append(p)
         pg = [self.trueX-self.t0_gt[0], self.trueY-self.t0_gt[1], self.trueZ-self.t0_gt[2]]  # the groudtruth traj starts at 0  
         self.traj3d_gt.append(pg)     
         self.poses.append(poseRt(self.cur_R, p))   
Exemplo n.º 2
0
 def estimatePose(self, kpn_ref, kpn_cur):
     E, self.mask_match = cv2.findEssentialMat(
         kpn_cur,
         kpn_ref,
         focal=1,
         pp=(0., 0.),
         method=cv2.RANSAC,
         prob=kRansacProb,
         threshold=kRansacThresholdNormalized)
     _, R, t, mask = cv2.recoverPose(E,
                                     kpn_cur,
                                     kpn_ref,
                                     focal=1,
                                     pp=(0., 0.))
     return poseRt(
         R, t.T
     )  # Trc  homogeneous transformation matrix with respect to 'ref' frame,  pr_= Trc * pc_
Exemplo n.º 3
0
 def estimatePose(self, kpn_ref, kpn_cur):
     # here, the essential matrix algorithm uses the five-point algorithm solver by D. Nister (see the notes and paper above )
     E, self.mask_match = cv2.findEssentialMat(
         kpn_cur,
         kpn_ref,
         focal=1,
         pp=(0., 0.),
         method=cv2.RANSAC,
         prob=kRansacProb,
         threshold=kRansacThresholdNormalized)
     _, R, t, mask = cv2.recoverPose(E,
                                     kpn_cur,
                                     kpn_ref,
                                     focal=1,
                                     pp=(0., 0.))
     return poseRt(
         R, t.T
     )  # Trc  homogeneous transformation matrix with respect to 'ref' frame,  pr_= Trc * pc_