Exemplo n.º 1
0
    def sample_embs(self,
                    emb0,
                    emb1,
                    valid,
                    B,
                    Z,
                    Y,
                    X,
                    mod='',
                    do_vis=False,
                    summ_writer=None):
        if hyp.emb_3D_mindist == 0.0:
            # pure random
            perm = torch.randperm(B * Z * Y * X)
            emb0 = emb0.reshape(B * Z * Y * X, -1)
            emb1 = emb1.reshape(B * Z * Y * X, -1)
            valid = valid.reshape(B * Z * Y * X, -1)
            emb0 = emb0[perm[:self.num_samples * B]]
            emb1 = emb1[perm[:self.num_samples * B]]
            valid = valid[perm[:self.num_samples * B]]
            return emb0, emb1, valid
        else:
            emb0_all = []
            emb1_all = []
            valid_all = []
            for b in list(range(B)):
                sample_indices, sample_locs, sample_valids = utils_misc.get_safe_samples(
                    valid[b], (Z, Y, X),
                    self.num_samples,
                    mode='3D',
                    tol=hyp.emb_3D_mindist)
                emb0_s_ = emb0[b, sample_indices]
                emb1_s_ = emb1[b, sample_indices]
                # these are N x D
                emb0_all.append(emb0_s_)
                emb1_all.append(emb1_s_)
                valid_all.append(sample_valids)

            if do_vis and (summ_writer is not None):
                sample_occ = utils_vox.voxelize_xyz(torch.unsqueeze(
                    sample_locs, dim=0),
                                                    Z,
                                                    Y,
                                                    X,
                                                    already_mem=True)
                summ_writer.summ_occ('emb3D/samples_%s/sample_occ' % mod,
                                     sample_occ,
                                     reduce_axes=[2, 3])
                summ_writer.summ_occ('emb3D/samples_%s/valid' % mod,
                                     torch.reshape(valid, [B, 1, Z, Y, X]),
                                     reduce_axes=[2, 3])

            emb0_all = torch.cat(emb0_all, axis=0)
            emb1_all = torch.cat(emb1_all, axis=0)
            valid_all = torch.cat(valid_all, axis=0)
            return emb0_all, emb1_all, valid_all
Exemplo n.º 2
0
    def forward(self,
                feats,
                xyzlist_cam,
                scorelist,
                vislist,
                occs,
                summ_writer,
                suffix=''):
        total_loss = torch.tensor(0.0).cuda()
        B, S, C, Z2, Y2, X2 = list(feats.shape)
        B, S, C, Z, Y, X = list(occs.shape)
        B2, S2, D = list(xyzlist_cam.shape)
        assert (B == B2, S == S2)
        assert (D == 3)

        xyzlist_mem = utils_vox.Ref2Mem(xyzlist_cam, Z, Y, X)
        # these are B x S x 3
        scorelist = scorelist.unsqueeze(2)
        # this is B x S x 1
        vislist = vislist[:, 0].reshape(B, 1, 1)
        # we only care that the object was visible in frame0
        scorelist = scorelist * vislist

        if self.use_cost_vols:
            if summ_writer.save_this:
                summ_writer.summ_traj_on_occ('forecast/actual_traj',
                                             xyzlist_mem * scorelist,
                                             torch.max(occs, dim=1)[0],
                                             already_mem=True,
                                             sigma=2)

            Z2, Y2, X2 = int(Z / 2), int(Y / 2), int(X / 2)
            Z4, Y4, X4 = int(Z / 4), int(Y / 4), int(X / 4)
            occ_hint0 = utils_vox.voxelize_xyz(xyzlist_cam[:, 0:1], Z4, Y4, X4)
            occ_hint1 = utils_vox.voxelize_xyz(xyzlist_cam[:, 1:2], Z4, Y4, X4)
            occ_hint0 = occ_hint0 * scorelist[:, 0].reshape(B, 1, 1, 1, 1)
            occ_hint1 = occ_hint1 * scorelist[:, 1].reshape(B, 1, 1, 1, 1)
            occ_hint = torch.cat([occ_hint0, occ_hint1], dim=1)
            occ_hint = F.interpolate(occ_hint, scale_factor=4, mode='nearest')
            # this is B x 1 x Z x Y x X
            summ_writer.summ_occ('forecast/occ_hint',
                                 (occ_hint0 + occ_hint1).clamp(0, 1))

            crops = []
            for s in list(range(S)):
                crop = utils_vox.center_mem_on_xyz(occs_highres[:, s],
                                                   xyzlist_cam[:,
                                                               s], Z2, Y2, X2)
                crops.append(crop)
            crops = torch.stack(crops, dim=0)
            summ_writer.summ_occs('forecast/crops', crops)

            # condition on the occ_hint
            feat = torch.cat([feat, occ_hint], dim=1)

            N = hyp.forecast_num_negs
            sampled_trajs_mem = self.sample_trajs_from_library(N, xyzlist_mem)

            if summ_writer.save_this:
                for n in list(range(np.min([N, 10]))):
                    xyzlist_mem = sampled_trajs_mem[0, n].unsqueeze(0)
                    # this is 1 x S x 3
                    summ_writer.summ_traj_on_occ(
                        'forecast/lib%d_xyzlist' % n,
                        xyzlist_mem,
                        torch.zeros([1, 1, Z, Y, X]).float().cuda(),
                        already_mem=True)

            cost_vols = self.cost_forecaster(feat)
            # cost_vols = F.sigmoid(cost_vols)
            cost_vols = F.interpolate(cost_vols,
                                      scale_factor=2,
                                      mode='trilinear')

            # cost_vols is B x S x Z x Y x X
            summ_writer.summ_histogram('forecast/cost_vols_hist', cost_vols)
            cost_vols = cost_vols.clamp(
                -1000, 1000)  # raquel says this adds stability
            summ_writer.summ_histogram('forecast/cost_vols_clamped_hist',
                                       cost_vols)

            cost_vols_vis = torch.mean(cost_vols, dim=3).unsqueeze(2)
            # cost_vols_vis is B x S x 1 x Z x X
            summ_writer.summ_oneds('forecast/cost_vols_vis',
                                   torch.unbind(cost_vols_vis, dim=1))

            # smooth loss
            cost_vols_ = cost_vols.reshape(B * S, 1, Z, Y, X)
            dz, dy, dx = gradient3D(cost_vols_, absolute=True)
            dt = torch.abs(cost_vols[:, 1:] - cost_vols[:, 0:-1])
            smooth_vox_spatial = torch.mean(dx + dy + dz, dim=1, keepdims=True)
            smooth_vox_time = torch.mean(dt, dim=1, keepdims=True)
            summ_writer.summ_oned('forecast/smooth_loss_spatial',
                                  torch.mean(smooth_vox_spatial, dim=3))
            summ_writer.summ_oned('forecast/smooth_loss_time',
                                  torch.mean(smooth_vox_time, dim=3))
            smooth_loss = torch.mean(smooth_vox_spatial) + torch.mean(
                smooth_vox_time)
            total_loss = utils_misc.add_loss('forecast/smooth_loss',
                                             total_loss, smooth_loss,
                                             hyp.forecast_smooth_coeff,
                                             summ_writer)

            def clamp_xyz(xyz, X, Y, Z):
                x, y, z = torch.unbind(xyz, dim=-1)
                x = x.clamp(0, X)
                y = x.clamp(0, Y)
                z = x.clamp(0, Z)
                xyz = torch.stack([x, y, z], dim=-1)
                return xyz

            # obj_xyzlist_mem is K x B x S x 3
            # xyzlist_mem is B x S x 3
            # sampled_trajs_mem is B x N x S x 3
            xyz_pos_ = xyzlist_mem.reshape(B * S, 1, 3)
            xyz_neg_ = sampled_trajs_mem.permute(0, 2, 1,
                                                 3).reshape(B * S, N, 3)
            # xyz_pos_ = clamp_xyz(xyz_pos_, X, Y, Z)
            # xyz_neg_ = clamp_xyz(xyz_neg_, X, Y, Z)
            xyz_ = torch.cat([xyz_pos_, xyz_neg_], dim=1)
            xyz_ = clamp_xyz(xyz_, X, Y, Z)
            cost_vols_ = cost_vols.reshape(B * S, 1, Z, Y, X)
            x, y, z = torch.unbind(xyz_, dim=2)
            # x = x.clamp(0, X)
            # y = x.clamp(0, Y)
            # z = x.clamp(0, Z)
            cost_ = utils_samp.bilinear_sample3D(cost_vols_, x, y,
                                                 z).squeeze(1)
            # cost is B*S x 1+N
            cost_pos = cost_[:, 0:1]  # B*S x 1
            cost_neg = cost_[:, 1:]  # B*S x N

            cost_pos = cost_pos.unsqueeze(2)  # B*S x 1 x 1
            cost_neg = cost_neg.unsqueeze(1)  # B*S x 1 x N

            utils_misc.add_loss('forecast/mean_cost_pos', 0,
                                torch.mean(cost_pos), 0, summ_writer)
            utils_misc.add_loss('forecast/mean_cost_neg', 0,
                                torch.mean(cost_neg), 0, summ_writer)
            utils_misc.add_loss('forecast/mean_margin', 0,
                                torch.mean(cost_neg - cost_pos), 0,
                                summ_writer)

            xyz_pos = xyz_pos_.unsqueeze(2)  # B*S x 1 x 1 x 3
            xyz_neg = xyz_neg_.unsqueeze(1)  # B*S x 1 x N x 3
            dist = torch.norm(xyz_pos - xyz_neg, dim=3)  # B*S x 1 x N
            dist = dist / float(
                Z) * 5.0  # normalize for resolution, but upweight it a bit
            margin = F.relu(cost_pos - cost_neg + dist)
            margin = margin.reshape(B, S, N)
            # mean over time (in the paper this is a sum)
            margin = utils_basic.reduce_masked_mean(margin,
                                                    scorelist.repeat(1, 1, N),
                                                    dim=1)
            # max over the negatives
            maxmargin = torch.max(margin, dim=1)[0]  # B
            maxmargin_loss = torch.mean(maxmargin)
            total_loss = utils_misc.add_loss('forecast/maxmargin_loss',
                                             total_loss, maxmargin_loss,
                                             hyp.forecast_maxmargin_coeff,
                                             summ_writer)

            cost_neg = cost_neg.reshape(B, S, N)[0].detach().cpu().numpy()
            sampled_trajs_mem = sampled_trajs_mem.reshape(B, N, S, 3)[0:1]
            cost_neg = np.reshape(cost_neg, [S, N])
            cost_neg = np.sum(cost_neg, axis=0)
            inds = np.argsort(cost_neg, axis=0)

            for n in list(range(2)):

                xyzlist_e_mem = sampled_trajs_mem[0:1, inds[n]]
                xyzlist_e_cam = utils_vox.Mem2Ref(xyzlist_e_mem, Z, Y, X)
                # this is B x S x 3

                # if summ_writer.save_this and n==0:
                #     print('xyzlist_e_cam', xyzlist_e_cam[0:1])
                #     print('xyzlist_g_cam', xyzlist_cam[0:1])
                #     print('scorelist', scorelist[0:1])

                dist = torch.norm(xyzlist_cam[0:1] - xyzlist_e_cam[0:1], dim=2)
                # this is B x S
                meandist = utils_basic.reduce_masked_mean(
                    dist, scorelist[0:1].squeeze(2))
                utils_misc.add_loss('forecast/xyz_dist_%d' % n, 0, meandist, 0,
                                    summ_writer)
                # dist = torch.mean(torch.sum(torch.norm(xyzlist_cam[0:1] - xyzlist_e_cam[0:1], dim=2), dim=1))

                # mpe = torch.mean(torch.norm(xyzlist_cam[0:1,int(S/2)] - xyzlist_e_cam[0:1,int(S/2)], dim=1))
                # mpe = utils_basic.reduce_masked_mean(dist, scorelist[0:1])
                # utils_misc.add_loss('forecast/xyz_mpe_%d' % n, 0, dist, 0, summ_writer)

                # epe = torch.mean(torch.norm(xyzlist_cam[0:1,-1] - xyzlist_e_cam[0:1,-1], dim=1))
                # utils_misc.add_loss('forecast/xyz_epe_%d' % n, 0, dist, 0, summ_writer)

            if summ_writer.save_this:
                # plot the best and worst trajs
                # print('sorted costs:', cost_neg[inds])
                for n in list(range(2)):
                    ind = inds[n]
                    # print('plotting good traj with cost %.2f' % (cost_neg[ind]))
                    xyzlist_e_mem = sampled_trajs_mem[:, ind]
                    # this is 1 x S x 3
                    summ_writer.summ_traj_on_occ(
                        'forecast/best_sampled_traj%d' % n,
                        xyzlist_e_mem,
                        torch.max(occs[0:1], dim=1)[0],
                        # torch.zeros([1, 1, Z, Y, X]).float().cuda(),
                        already_mem=True,
                        sigma=1)

                for n in list(range(2)):
                    ind = inds[-(n + 1)]
                    # print('plotting bad traj with cost %.2f' % (cost_neg[ind]))
                    xyzlist_e_mem = sampled_trajs_mem[:, ind]
                    # this is 1 x S x 3
                    summ_writer.summ_traj_on_occ(
                        'forecast/worst_sampled_traj%d' % n,
                        xyzlist_e_mem,
                        torch.max(occs[0:1], dim=1)[0],
                        # torch.zeros([1, 1, Z, Y, X]).float().cuda(),
                        already_mem=True,
                        sigma=1)
        else:

            # use some timesteps as input
            feat_input = feats[:, :self.num_given].squeeze(2)
            # feat_input is B x self.num_given x ZZ x ZY x ZX

            ## regular bottle3D
            # vel_e = self.regressor(feat_input)

            ## sparse-invar bottle3D
            comp_mask = 1.0 - (feat_input == 0).all(dim=1,
                                                    keepdim=True).float()
            summ_writer.summ_feat('forecast/feat_input', feat_input, pca=False)
            summ_writer.summ_feat('forecast/feat_comp_mask',
                                  comp_mask,
                                  pca=False)
            vel_e = self.regressor(feat_input, comp_mask)

            vel_e = vel_e.reshape(B, self.num_need, 3)
            vel_g = xyzlist_cam[:,
                                self.num_given:] - xyzlist_cam[:,
                                                               self.num_given -
                                                               1:-1]

            xyzlist_e = torch.zeros_like(xyzlist_cam)
            xyzlist_g = torch.zeros_like(xyzlist_cam)
            for s in list(range(S)):
                # print('s = %d' % s)
                if s < self.num_given:
                    # print('grabbing from gt ind %s' % s)
                    xyzlist_e[:, s] = xyzlist_cam[:, s]
                    xyzlist_g[:, s] = xyzlist_cam[:, s]
                else:
                    # print('grabbing from s-self.num_given, which is ind %d' % (s-self.num_given))
                    xyzlist_e[:,
                              s] = xyzlist_e[:, s - 1] + vel_e[:, s -
                                                               self.num_given]
                    xyzlist_g[:,
                              s] = xyzlist_g[:, s - 1] + vel_g[:, s -
                                                               self.num_given]

        xyzlist_e_mem = utils_vox.Ref2Mem(xyzlist_e, Z, Y, X)
        xyzlist_g_mem = utils_vox.Ref2Mem(xyzlist_g, Z, Y, X)
        summ_writer.summ_traj_on_occ('forecast/traj_e',
                                     xyzlist_e_mem,
                                     torch.max(occs, dim=1)[0],
                                     already_mem=True,
                                     sigma=2)
        summ_writer.summ_traj_on_occ('forecast/traj_g',
                                     xyzlist_g_mem,
                                     torch.max(occs, dim=1)[0],
                                     already_mem=True,
                                     sigma=2)

        scorelist_here = scorelist[:, self.num_given:, 0]
        sql2 = torch.sum((vel_g - vel_e)**2, dim=2)

        ## yes weightmask
        weightmask = torch.arange(0,
                                  self.num_need,
                                  dtype=torch.float32,
                                  device=torch.device('cuda'))
        weightmask = torch.exp(-weightmask**(1. / 4))
        # 1.0000, 0.3679, 0.3045, 0.2682, 0.2431, 0.2242, 0.2091, 0.1966, 0.1860,
        #         0.1769, 0.1689, 0.1618, 0.1555, 0.1497, 0.1445, 0.1397, 0.1353
        weightmask = weightmask.reshape(1, self.num_need)
        l2_loss = utils_basic.reduce_masked_mean(sql2,
                                                 scorelist_here * weightmask)

        utils_misc.add_loss('forecast/l2_loss', 0, l2_loss, 0, summ_writer)

        # # no weightmask:
        # l2_loss = utils_basic.reduce_masked_mean(sql2, scorelist_here)

        # total_loss = utils_misc.add_loss('forecast/l2_loss', total_loss, l2_loss, hyp.forecast_l2_coeff, summ_writer)

        dist = torch.norm(xyzlist_e - xyzlist_g, dim=2)
        meandist = utils_basic.reduce_masked_mean(dist, scorelist[:, :, 0])
        utils_misc.add_loss('forecast/xyz_dist_0', 0, meandist, 0, summ_writer)

        l2_loss_noexp = utils_basic.reduce_masked_mean(sql2, scorelist_here)
        # utils_misc.add_loss('forecast/vel_dist_noexp', 0, l2_loss, 0, summ_writer)
        total_loss = utils_misc.add_loss('forecast/l2_loss_noexp', total_loss,
                                         l2_loss_noexp, hyp.forecast_l2_coeff,
                                         summ_writer)

        return total_loss
Exemplo n.º 3
0
    def __getitem__(self, index):
        if hyp.dataset_name == 'kitti' or hyp.dataset_name == 'clevr' or hyp.dataset_name == 'real' or hyp.dataset_name == "bigbird" or hyp.dataset_name == "carla" or hyp.dataset_name == "carla_mix" or hyp.dataset_name == "replica" or hyp.dataset_name == "clevr_vqa" or hyp.dataset_name == "carla_det":
            # print(index)
            # st()
            filename = self.records[index]
            d = pickle.load(open(filename, "rb"))
            d = dict(d)

            d_empty = pickle.load(open(self.empty_scene, "rb"))
            d_empty = dict(d_empty)
            # st()
        # elif hyp.dataset_name=="carla":
        #     filename = self.records[index]
        #     d = np.load(filename)
        #     d = dict(d)

        #     d['rgb_camXs_raw'] = d['rgb_camXs']
        #     d['pix_T_cams_raw'] = d['pix_T_cams']
        #     d['tree_seq_filename'] = "dummy_tree_filename"
        #     d['origin_T_camXs_raw'] = d['origin_T_camXs']
        #     d['camR_T_origin_raw'] = utils_geom.safe_inverse(torch.from_numpy(d['origin_T_camRs'])).numpy()
        #     d['xyz_camXs_raw'] = d['xyz_camXs']

        else:
            assert (False)  # reader not ready yet

        if hyp.do_empty:
            item_names = [
                'pix_T_cams_raw',
                'origin_T_camXs_raw',
                'camR_T_origin_raw',
                'rgb_camXs_raw',
                'xyz_camXs_raw',
                'empty_rgb_camXs_raw',
                'empty_xyz_camXs_raw',
            ]
        else:
            item_names = [
                'pix_T_cams_raw',
                'origin_T_camXs_raw',
                'camR_T_origin_raw',
                'rgb_camXs_raw',
                'xyz_camXs_raw',
            ]

        if hyp.use_gt_occs:
            __p = lambda x: utils_basic.pack_seqdim(x, 1)
            __u = lambda x: utils_basic.unpack_seqdim(x, 1)

            B, H, W, V, S, N = hyp.B, hyp.H, hyp.W, hyp.V, hyp.S, hyp.N
            PH, PW = hyp.PH, hyp.PW
            K = hyp.K
            BOX_SIZE = hyp.BOX_SIZE
            Z, Y, X = hyp.Z, hyp.Y, hyp.X
            Z2, Y2, X2 = int(Z / 2), int(Y / 2), int(X / 2)
            Z4, Y4, X4 = int(Z / 4), int(Y / 4), int(X / 4)
            D = 9
            pix_T_cams = torch.from_numpy(
                d["pix_T_cams_raw"]).unsqueeze(0).cuda().to(torch.float)
            camRs_T_origin = torch.from_numpy(
                d["camR_T_origin_raw"]).unsqueeze(0).cuda().to(torch.float)
            origin_T_camRs = __u(utils_geom.safe_inverse(__p(camRs_T_origin)))
            origin_T_camXs = torch.from_numpy(
                d["origin_T_camXs_raw"]).unsqueeze(0).cuda().to(torch.float)
            camX0_T_camXs = utils_geom.get_camM_T_camXs(origin_T_camXs, ind=0)
            camRs_T_camXs = __u(
                torch.matmul(utils_geom.safe_inverse(__p(origin_T_camRs)),
                             __p(origin_T_camXs)))
            camXs_T_camRs = __u(utils_geom.safe_inverse(__p(camRs_T_camXs)))
            camX0_T_camRs = camXs_T_camRs[:, 0]
            camX1_T_camRs = camXs_T_camRs[:, 1]
            camR_T_camX0 = utils_geom.safe_inverse(camX0_T_camRs)
            xyz_camXs = torch.from_numpy(
                d["xyz_camXs_raw"]).unsqueeze(0).cuda().to(torch.float)
            xyz_camRs = __u(
                utils_geom.apply_4x4(__p(camRs_T_camXs), __p(xyz_camXs)))
            depth_camXs_, valid_camXs_ = utils_geom.create_depth_image(
                __p(pix_T_cams), __p(xyz_camXs), H, W)
            dense_xyz_camXs_ = utils_geom.depth2pointcloud(
                depth_camXs_, __p(pix_T_cams))
            occXs = __u(utils_vox.voxelize_xyz(__p(xyz_camXs), Z, Y, X))
            occRs_half = __u(utils_vox.voxelize_xyz(__p(xyz_camRs), Z2, Y2,
                                                    X2))
            occRs_half = torch.max(occRs_half, dim=1).values.squeeze(0)
            occ_complete = occRs_half.cpu().numpy()

        # if hyp.do_time_flip:
        #     d = random_time_flip_single(d,item_names)
        # if the sequence length > 2, select S frames
        # filename = d['raw_seq_filename']
        original_filename = filename
        original_filename_empty = self.empty_scene

        # st()
        if hyp.dataset_name == "clevr_vqa":
            d['tree_seq_filename'] = "temp"
            pix_T_cams = d['pix_T_cams_raw']
            num_cams = pix_T_cams.shape[0]
            # padding_1 = torch.zeros([num_cams,1,3])
            # padding_2 = torch.zeros([num_cams,4,1])
            # padding_2[:,3] = 1.0
            # st()
            # pix_T_cams = torch.cat([pix_T_cams,padding_1],dim=1)
            # pix_T_cams = torch.cat([pix_T_cams,padding_2],dim=2)
            # st()
            shape_name = d['shape_list']
            color_name = d['color_list']
            material_name = d['material_list']
            all_name = []
            all_style = []
            for index in range(len(shape_name)):
                name = shape_name[index] + "/" + color_name[
                    index] + "_" + material_name[index]
                style_name = color_name[index] + "_" + material_name[index]
                all_name.append(name)
                all_style.append(style_name)

            # st()

            if hyp.do_shape:
                class_name = shape_name
            elif hyp.do_color:
                class_name = color_name
            elif hyp.do_material:
                class_name = material_name
            elif hyp.do_style:
                class_name = all_style
            else:
                class_name = all_name

            object_category = class_name
            bbox_origin = d['bbox_origin']
            # bbox_origin = torch.cat([bbox_origin],dim=0)
            # object_category = object_category
            bbox_origin_empty = np.zeros_like(bbox_origin)
            object_category_empty = ['0']
        # st()
        if not hyp.dataset_name == "clevr_vqa":
            filename = d['tree_seq_filename']
            filename_empty = d_empty['tree_seq_filename']
        if hyp.fixed_view:
            d, indexes = non_random_select_single(d,
                                                  item_names,
                                                  num_samples=hyp.S)
            d_empty, indexes_empty = specific_select_single_empty(
                d_empty,
                item_names,
                d['origin_T_camXs_raw'],
                num_samples=hyp.S)

        filename_g = "/".join([original_filename, str(indexes[0])])
        filename_e = "/".join([original_filename, str(indexes[1])])

        filename_g_empty = "/".join([original_filename_empty, str(indexes[0])])
        filename_e_empty = "/".join([original_filename_empty, str(indexes[1])])

        rgb_camXs = d['rgb_camXs_raw']
        rgb_camXs_empty = d_empty['rgb_camXs_raw']
        # move channel dim inward, like pytorch wants
        # rgb_camRs = np.transpose(rgb_camRs, axes=[0, 3, 1, 2])
        rgb_camXs = np.transpose(rgb_camXs, axes=[0, 3, 1, 2])
        rgb_camXs = rgb_camXs[:, :3]
        rgb_camXs = utils_improc.preprocess_color(rgb_camXs)

        rgb_camXs_empty = np.transpose(rgb_camXs_empty, axes=[0, 3, 1, 2])
        rgb_camXs_empty = rgb_camXs_empty[:, :3]
        rgb_camXs_empty = utils_improc.preprocess_color(rgb_camXs_empty)

        if hyp.dataset_name == "clevr_vqa":
            num_boxes = bbox_origin.shape[0]
            bbox_origin = np.array(bbox_origin)
            score = np.pad(np.ones([num_boxes]), [0, hyp.N - num_boxes])
            bbox_origin = np.pad(bbox_origin,
                                 [[0, hyp.N - num_boxes], [0, 0], [0, 0]])
            object_category = np.pad(object_category, [[0, hyp.N - num_boxes]],
                                     lambda x, y, z, m: "0")
            object_category_empty = np.pad(object_category_empty,
                                           [[0, hyp.N - 1]],
                                           lambda x, y, z, m: "0")

            # st()
            score_empty = np.zeros_like(score)
            bbox_origin_empty = np.zeros_like(bbox_origin)
            d['gt_box'] = np.stack(
                [bbox_origin.astype(np.float32), bbox_origin_empty])
            d['gt_scores'] = np.stack([score.astype(np.float32), score_empty])
            try:
                d['classes'] = np.stack(
                    [object_category, object_category_empty]).tolist()
            except Exception as e:
                st()

        d['rgb_camXs_raw'] = np.stack([rgb_camXs, rgb_camXs_empty])
        d['pix_T_cams_raw'] = np.stack(
            [d["pix_T_cams_raw"], d_empty["pix_T_cams_raw"]])
        d['origin_T_camXs_raw'] = np.stack(
            [d["origin_T_camXs_raw"], d_empty["origin_T_camXs_raw"]])
        d['camR_T_origin_raw'] = np.stack(
            [d["camR_T_origin_raw"], d_empty["camR_T_origin_raw"]])
        d['xyz_camXs_raw'] = np.stack(
            [d["xyz_camXs_raw"], d_empty["xyz_camXs_raw"]])
        # d['rgb_camXs_raw'] = rgb_camXs
        # d['tree_seq_filename'] = filename
        if not hyp.dataset_name == "clevr_vqa":
            d['tree_seq_filename'] = [filename, "invalid_tree"]
        else:
            d['tree_seq_filename'] = ["temp"]
        # st()
        d['filename_e'] = ["temp"]
        d['filename_g'] = ["temp"]
        if hyp.use_gt_occs:
            d['occR_complete'] = np.expand_dims(occ_complete, axis=0)
        return d
Exemplo n.º 4
0
    def __getitem__(self, index):
        if hyp.dataset_name == 'kitti' or hyp.dataset_name == 'clevr' or hyp.dataset_name == 'real' or hyp.dataset_name == "bigbird" or hyp.dataset_name == "carla" or hyp.dataset_name == "carla_mix" or hyp.dataset_name == "carla_det" or hyp.dataset_name == "replica" or hyp.dataset_name == "clevr_vqa":
            # print(index)
            filename = self.records[index]
            d = pickle.load(open(filename, "rb"))
            d = dict(d)
        # elif hyp.dataset_name=="carla":
        #     filename = self.records[index]
        #     d = np.load(filename)
        #     d = dict(d)

        #     d['rgb_camXs_raw'] = d['rgb_camXs']
        #     d['pix_T_cams_raw'] = d['pix_T_cams']
        #     d['tree_seq_filename'] = "dummy_tree_filename"
        #     d['origin_T_camXs_raw'] = d['origin_T_camXs']
        #     d['camR_T_origin_raw'] = utils_geom.safe_inverse(torch.from_numpy(d['origin_T_camRs'])).numpy()
        #     d['xyz_camXs_raw'] = d['xyz_camXs']

        else:
            assert (False)  # reader not ready yet

        # st()
        # if hyp.save_gt_occs:
        # pickle.dump(d,open(filename, "wb"))
        # st()
        # st()
        if hyp.use_gt_occs:
            __p = lambda x: utils_basic.pack_seqdim(x, 1)
            __u = lambda x: utils_basic.unpack_seqdim(x, 1)

            B, H, W, V, S, N = hyp.B, hyp.H, hyp.W, hyp.V, hyp.S, hyp.N
            PH, PW = hyp.PH, hyp.PW
            K = hyp.K
            BOX_SIZE = hyp.BOX_SIZE
            Z, Y, X = hyp.Z, hyp.Y, hyp.X
            Z2, Y2, X2 = int(Z / 2), int(Y / 2), int(X / 2)
            Z4, Y4, X4 = int(Z / 4), int(Y / 4), int(X / 4)
            D = 9
            pix_T_cams = torch.from_numpy(
                d["pix_T_cams_raw"]).unsqueeze(0).cuda().to(torch.float)
            camRs_T_origin = torch.from_numpy(
                d["camR_T_origin_raw"]).unsqueeze(0).cuda().to(torch.float)
            origin_T_camRs = __u(utils_geom.safe_inverse(__p(camRs_T_origin)))
            origin_T_camXs = torch.from_numpy(
                d["origin_T_camXs_raw"]).unsqueeze(0).cuda().to(torch.float)
            camX0_T_camXs = utils_geom.get_camM_T_camXs(origin_T_camXs, ind=0)
            camRs_T_camXs = __u(
                torch.matmul(utils_geom.safe_inverse(__p(origin_T_camRs)),
                             __p(origin_T_camXs)))
            camXs_T_camRs = __u(utils_geom.safe_inverse(__p(camRs_T_camXs)))
            camX0_T_camRs = camXs_T_camRs[:, 0]
            camX1_T_camRs = camXs_T_camRs[:, 1]
            camR_T_camX0 = utils_geom.safe_inverse(camX0_T_camRs)
            xyz_camXs = torch.from_numpy(
                d["xyz_camXs_raw"]).unsqueeze(0).cuda().to(torch.float)
            xyz_camRs = __u(
                utils_geom.apply_4x4(__p(camRs_T_camXs), __p(xyz_camXs)))
            depth_camXs_, valid_camXs_ = utils_geom.create_depth_image(
                __p(pix_T_cams), __p(xyz_camXs), H, W)
            dense_xyz_camXs_ = utils_geom.depth2pointcloud(
                depth_camXs_, __p(pix_T_cams))
            occXs = __u(utils_vox.voxelize_xyz(__p(xyz_camXs), Z, Y, X))
            occRs_half = __u(utils_vox.voxelize_xyz(__p(xyz_camRs), Z2, Y2,
                                                    X2))
            occRs_half = torch.max(occRs_half, dim=1).values.squeeze(0)
            occ_complete = occRs_half.cpu().numpy()

            # st()

        if hyp.do_empty:
            item_names = [
                'pix_T_cams_raw',
                'origin_T_camXs_raw',
                'camR_T_origin_raw',
                'rgb_camXs_raw',
                'xyz_camXs_raw',
                'empty_rgb_camXs_raw',
                'empty_xyz_camXs_raw',
            ]
        else:
            item_names = [
                'pix_T_cams_raw',
                'origin_T_camXs_raw',
                'camR_T_origin_raw',
                'rgb_camXs_raw',
                'xyz_camXs_raw',
            ]

        # if hyp.do_time_flip:
        #     d = random_time_flip_single(d,item_names)
        # if the sequence length > 2, select S frames
        # filename = d['raw_seq_filename']
        original_filename = filename
        if hyp.dataset_name == "carla_mix" or hyp.dataset_name == "carla_det":
            bbox_origin_gt = d['bbox_origin']
            if 'bbox_origin_predicted' in d:
                bbox_origin_predicted = d['bbox_origin_predicted']
            else:
                bbox_origin_predicted = []
            classes = d['obj_name']

            if isinstance(classes, str):
                classes = [classes]
            # st()

            d['tree_seq_filename'] = "temp"
        if hyp.dataset_name == "replica":
            d['tree_seq_filename'] = "temp"
            object_category = d['object_category_names']
            bbox_origin = d['bbox_origin']

        if hyp.dataset_name == "clevr_vqa":
            d['tree_seq_filename'] = "temp"
            pix_T_cams = d['pix_T_cams_raw']
            num_cams = pix_T_cams.shape[0]
            # padding_1 = torch.zeros([num_cams,1,3])
            # padding_2 = torch.zeros([num_cams,4,1])
            # padding_2[:,3] = 1.0
            # st()
            # pix_T_cams = torch.cat([pix_T_cams,padding_1],dim=1)
            # pix_T_cams = torch.cat([pix_T_cams,padding_2],dim=2)
            # st()
            shape_name = d['shape_list']
            color_name = d['color_list']
            material_name = d['material_list']
            all_name = []
            all_style = []
            for index in range(len(shape_name)):
                name = shape_name[index] + "/" + color_name[
                    index] + "_" + material_name[index]
                style_name = color_name[index] + "_" + material_name[index]
                all_name.append(name)
                all_style.append(style_name)

            # st()

            if hyp.do_shape:
                class_name = shape_name
            elif hyp.do_color:
                class_name = color_name
            elif hyp.do_material:
                class_name = material_name
            elif hyp.do_style:
                class_name = all_style
            else:
                class_name = all_name

            object_category = class_name
            bbox_origin = d['bbox_origin']
            # st()

        if hyp.dataset_name == "carla":
            camR_index = d['camR_index']
            rgb_camtop = d['rgb_camXs_raw'][camR_index:camR_index + 1]
            origin_T_camXs_top = d['origin_T_camXs_raw'][
                camR_index:camR_index + 1]
            # predicted_box  = d['bbox_origin_predicted']
            predicted_box = []
        filename = d['tree_seq_filename']
        if hyp.do_2d_style_munit:
            d, indexes = non_random_select_single(d,
                                                  item_names,
                                                  num_samples=hyp.S)

        # st()
        if hyp.fixed_view:
            d, indexes = non_random_select_single(d,
                                                  item_names,
                                                  num_samples=hyp.S)
        elif self.shuffle or hyp.randomly_select_views:
            d, indexes = random_select_single(d, item_names, num_samples=hyp.S)
        else:
            d, indexes = non_random_select_single(d,
                                                  item_names,
                                                  num_samples=hyp.S)

        filename_g = "/".join([original_filename, str(indexes[0])])
        filename_e = "/".join([original_filename, str(indexes[1])])

        rgb_camXs = d['rgb_camXs_raw']
        # move channel dim inward, like pytorch wants
        # rgb_camRs = np.transpose(rgb_camRs, axes=[0, 3, 1, 2])

        rgb_camXs = np.transpose(rgb_camXs, axes=[0, 3, 1, 2])
        rgb_camXs = rgb_camXs[:, :3]
        rgb_camXs = utils_improc.preprocess_color(rgb_camXs)

        if hyp.dataset_name == "carla":
            rgb_camtop = np.transpose(rgb_camtop, axes=[0, 3, 1, 2])
            rgb_camtop = rgb_camtop[:, :3]
            rgb_camtop = utils_improc.preprocess_color(rgb_camtop)
            d['rgb_camtop'] = rgb_camtop
            d['origin_T_camXs_top'] = origin_T_camXs_top
            if len(predicted_box) == 0:
                predicted_box = np.zeros([hyp.N, 6])
                score = np.zeros([hyp.N]).astype(np.float32)
            else:
                num_boxes = predicted_box.shape[0]
                score = np.pad(np.ones([num_boxes]), [0, hyp.N - num_boxes])
                predicted_box = np.pad(predicted_box,
                                       [[0, hyp.N - num_boxes], [0, 0]])
            d['predicted_box'] = predicted_box.astype(np.float32)
            d['predicted_scores'] = score.astype(np.float32)
        if hyp.dataset_name == "clevr_vqa":
            num_boxes = bbox_origin.shape[0]
            bbox_origin = np.array(bbox_origin)
            score = np.pad(np.ones([num_boxes]), [0, hyp.N - num_boxes])
            bbox_origin = np.pad(bbox_origin,
                                 [[0, hyp.N - num_boxes], [0, 0], [0, 0]])
            object_category = np.pad(object_category, [[0, hyp.N - num_boxes]],
                                     lambda x, y, z, m: "0")

            d['gt_box'] = bbox_origin.astype(np.float32)
            d['gt_scores'] = score.astype(np.float32)
            d['classes'] = list(object_category)

        if hyp.dataset_name == "replica":
            if len(bbox_origin) == 0:
                score = np.zeros([hyp.N])
                bbox_origin = np.zeros([hyp.N, 6])
                object_category = ["0"] * hyp.N
                object_category = np.array(object_category)
            else:
                num_boxes = len(bbox_origin)
                bbox_origin = torch.stack(bbox_origin).numpy().squeeze(
                    1).squeeze(1).reshape([num_boxes, 6])
                bbox_origin = np.array(bbox_origin)
                score = np.pad(np.ones([num_boxes]), [0, hyp.N - num_boxes])
                bbox_origin = np.pad(bbox_origin,
                                     [[0, hyp.N - num_boxes], [0, 0]])
                object_category = np.pad(object_category,
                                         [[0, hyp.N - num_boxes]],
                                         lambda x, y, z, m: "0")
            d['gt_box'] = bbox_origin.astype(np.float32)
            d['gt_scores'] = score.astype(np.float32)
            d['classes'] = list(object_category)
            # st()

        if hyp.dataset_name == "carla_mix" or hyp.dataset_name == "carla_det":
            bbox_origin_predicted = bbox_origin_predicted[:3]
            if len(bbox_origin_gt.shape) == 1:
                bbox_origin_gt = np.expand_dims(bbox_origin_gt, 0)
            num_boxes = bbox_origin_gt.shape[0]
            # st()
            score_gt = np.pad(np.ones([num_boxes]), [0, hyp.N - num_boxes])
            bbox_origin_gt = np.pad(bbox_origin_gt,
                                    [[0, hyp.N - num_boxes], [0, 0]])
            # st()
            classes = np.pad(classes, [[0, hyp.N - num_boxes]],
                             lambda x, y, z, m: "0")

            if len(bbox_origin_predicted) == 0:
                bbox_origin_predicted = np.zeros([hyp.N, 6])
                score_pred = np.zeros([hyp.N]).astype(np.float32)
            else:
                num_boxes = bbox_origin_predicted.shape[0]
                score_pred = np.pad(np.ones([num_boxes]),
                                    [0, hyp.N - num_boxes])
                bbox_origin_predicted = np.pad(
                    bbox_origin_predicted, [[0, hyp.N - num_boxes], [0, 0]])

            d['predicted_box'] = bbox_origin_predicted.astype(np.float32)
            d['predicted_scores'] = score_pred.astype(np.float32)
            d['gt_box'] = bbox_origin_gt.astype(np.float32)
            d['gt_scores'] = score_gt.astype(np.float32)
            d['classes'] = list(classes)

        d['rgb_camXs_raw'] = rgb_camXs

        if hyp.dataset_name != "carla" and hyp.do_empty:
            empty_rgb_camXs = d['empty_rgb_camXs_raw']
            # move channel dim inward, like pytorch wants
            empty_rgb_camXs = np.transpose(empty_rgb_camXs, axes=[0, 3, 1, 2])
            empty_rgb_camXs = empty_rgb_camXs[:, :3]
            empty_rgb_camXs = utils_improc.preprocess_color(empty_rgb_camXs)
            d['empty_rgb_camXs_raw'] = empty_rgb_camXs
        # st()
        if hyp.use_gt_occs:
            d['occR_complete'] = occ_complete
        d['tree_seq_filename'] = filename
        d['filename_e'] = filename_e
        d['filename_g'] = filename_g
        return d
Exemplo n.º 5
0
    def forward(self, feed, moc_init_done=False, debug=False):
        summ_writer = utils_improc.Summ_writer(
            writer = feed['writer'],
            global_step = feed['global_step'],
            set_name= feed['set_name'],
            fps=8)

        writer = feed['writer']
        global_step = feed['global_step']
        total_loss = torch.tensor(0.0).cuda()

        ### ... All things sensor ... ###
        sensor_rgbs = feed['sensor_imgs']
        sensor_depths = feed['sensor_depths']
        center_sensor_H, center_sensor_W = sensor_depths[0][0].shape[-1] // 2, sensor_depths[0][0].shape[-2] // 2
        ### ... All things sensor end ... ###

        # 1. Form the memory tensor using the feat net and visual images.
        # check what all do you need for this and create only those things

        ##  .... Input images ....  ##
        rgb_camRs = feed['rgb_camRs']
        rgb_camXs = feed['rgb_camXs']
        ##  .... Input images end ....  ##

        ## ... Hyperparams ... ##
        B, H, W, V, S = hyp.B, hyp.H, hyp.W, hyp.V, hyp.S
        __p = lambda x: pack_seqdim(x, B)
        __u = lambda x: unpack_seqdim(x, B)
        PH, PW = hyp.PH, hyp.PW
        Z, Y, X = hyp.Z, hyp.Y, hyp.X
        Z2, Y2, X2 = int(Z/2), int(Y/2), int(X/2)
        ## ... Hyperparams end ... ##

        ## .... VISUAL TRANSFORMS BEGIN .... ##
        pix_T_cams = feed['pix_T_cams']
        pix_T_cams_ = __p(pix_T_cams)
        origin_T_camRs = feed['origin_T_camRs']
        origin_T_camRs_ = __p(origin_T_camRs)
        origin_T_camXs = feed['origin_T_camXs']
        origin_T_camXs_ = __p(origin_T_camXs)
        camRs_T_camXs_ = torch.matmul(utils_geom.safe_inverse(
            origin_T_camRs_), origin_T_camXs_)
        camXs_T_camRs_ = utils_geom.safe_inverse(camRs_T_camXs_)
        camRs_T_camXs = __u(camRs_T_camXs_)
        camXs_T_camRs = __u(camXs_T_camRs_)
        pix_T_cams_ = utils_geom.pack_intrinsics(pix_T_cams_[:, 0, 0], pix_T_cams_[:, 1, 1], pix_T_cams_[:, 0, 2],
            pix_T_cams_[:, 1, 2])
        pix_T_camRs_ = torch.matmul(pix_T_cams_, camXs_T_camRs_)
        pix_T_camRs = __u(pix_T_camRs_)
        ## ... VISUAL TRANSFORMS END ... ##

        ## ... SENSOR TRANSFORMS BEGIN ... ##
        sensor_origin_T_camXs = feed['sensor_extrinsics']
        sensor_origin_T_camXs_ = __p(sensor_origin_T_camXs)
        sensor_origin_T_camRs = feed['sensor_origin_T_camRs']
        sensor_origin_T_camRs_ = __p(sensor_origin_T_camRs)
        sensor_camRs_T_origin_ = utils_geom.safe_inverse(sensor_origin_T_camRs_)

        sensor_camRs_T_camXs_ = torch.matmul(utils_geom.safe_inverse(
            sensor_origin_T_camRs_), sensor_origin_T_camXs_)
        sensor_camXs_T_camRs_ = utils_geom.safe_inverse(sensor_camRs_T_camXs_)

        sensor_camRs_T_camXs = __u(sensor_camRs_T_camXs_)
        sensor_camXs_T_camRs = __u(sensor_camXs_T_camRs_)

        sensor_pix_T_cams = feed['sensor_intrinsics']
        sensor_pix_T_cams_ = __p(sensor_pix_T_cams)
        sensor_pix_T_cams_ = utils_geom.pack_intrinsics(sensor_pix_T_cams_[:, 0, 0], sensor_pix_T_cams_[:, 1, 1],
            sensor_pix_T_cams_[:, 0, 2], sensor_pix_T_cams_[:, 1, 2])
        sensor_pix_T_camRs_ = torch.matmul(sensor_pix_T_cams_, sensor_camXs_T_camRs_)
        sensor_pix_T_camRs = __u(sensor_pix_T_camRs_)
        ## .... SENSOR TRANSFORMS END .... ##

        ## .... Visual Input point clouds .... ##
        xyz_camXs = feed['xyz_camXs']
        xyz_camXs_ = __p(xyz_camXs)
        xyz_camRs_ = utils_geom.apply_4x4(camRs_T_camXs_, xyz_camXs_)  # (40, 4, 4) (B*S, N, 3)
        xyz_camRs = __u(xyz_camRs_)
        assert all([torch.allclose(xyz_camR, inp_xyz_camR) for xyz_camR, inp_xyz_camR in zip(
            xyz_camRs, feed['xyz_camRs']
        )]), "computation of xyz_camR here and those computed in input do not match"
        ## .... Visual Input point clouds end .... ##

        ## ... Sensor input point clouds ... ##
        sensor_xyz_camXs = feed['sensor_xyz_camXs']
        sensor_xyz_camXs_ = __p(sensor_xyz_camXs)
        sensor_xyz_camRs_ = utils_geom.apply_4x4(sensor_camRs_T_camXs_, sensor_xyz_camXs_)
        sensor_xyz_camRs = __u(sensor_xyz_camRs_)
        assert all([torch.allclose(sensor_xyz, inp_sensor_xyz) for sensor_xyz, inp_sensor_xyz in zip(
            sensor_xyz_camRs, feed['sensor_xyz_camRs']
        )]), "the sensor_xyz_camRs computed in forward do not match those computed in input"

        ## ... visual occupancy computation voxelize the pointcloud from above ... ##
        occRs_ = utils_vox.voxelize_xyz(xyz_camRs_, Z, Y, X)
        occXs_ = utils_vox.voxelize_xyz(xyz_camXs_, Z, Y, X)
        occRs_half_ = utils_vox.voxelize_xyz(xyz_camRs_, Z2, Y2, X2)
        occXs_half_ = utils_vox.voxelize_xyz(xyz_camXs_, Z2, Y2, X2)
        ## ... visual occupancy computation end ... NOTE: no unpacking ##

        ## .. visual occupancy computation for sensor inputs .. ##
        sensor_occRs_ = utils_vox.voxelize_xyz(sensor_xyz_camRs_, Z, Y, X)
        sensor_occXs_ = utils_vox.voxelize_xyz(sensor_xyz_camXs_, Z, Y, X)
        sensor_occRs_half_ = utils_vox.voxelize_xyz(sensor_xyz_camRs_, Z2, Y2, X2)
        sensor_occXs_half_ = utils_vox.voxelize_xyz(sensor_xyz_camXs_, Z2, Y2, X2)

        ## ... unproject rgb images ... ##
        unpRs_ = utils_vox.unproject_rgb_to_mem(__p(rgb_camXs), Z, Y, X, pix_T_camRs_)
        unpXs_ = utils_vox.unproject_rgb_to_mem(__p(rgb_camXs), Z, Y, X, pix_T_cams_)
        ## ... unproject rgb finish ... NOTE: no unpacking ##

        ## ... Make depth images ... ##
        depth_camXs_, valid_camXs_ = utils_geom.create_depth_image(pix_T_cams_, xyz_camXs_, H, W)
        dense_xyz_camXs_ = utils_geom.depth2pointcloud(depth_camXs_, pix_T_cams_)
        dense_xyz_camRs_ = utils_geom.apply_4x4(camRs_T_camXs_, dense_xyz_camXs_)
        inbound_camXs_ = utils_vox.get_inbounds(dense_xyz_camRs_, Z, Y, X).float()
        inbound_camXs_ = torch.reshape(inbound_camXs_, [B*S, 1, H, W])
        valid_camXs = __u(valid_camXs_) * __u(inbound_camXs_)
        ## ... Make depth images ... ##

        ## ... Make sensor depth images ... ##
        sensor_depth_camXs_, sensor_valid_camXs_ = utils_geom.create_depth_image(sensor_pix_T_cams_,
            sensor_xyz_camXs_, H, W)
        sensor_dense_xyz_camXs_ = utils_geom.depth2pointcloud(sensor_depth_camXs_, sensor_pix_T_cams_)
        sensor_dense_xyz_camRs_ = utils_geom.apply_4x4(sensor_camRs_T_camXs_, sensor_dense_xyz_camXs_)
        sensor_inbound_camXs_ = utils_vox.get_inbounds(sensor_dense_xyz_camRs_, Z, Y, X).float()
        sensor_inbound_camXs_ = torch.reshape(sensor_inbound_camXs_, [B*hyp.sensor_S, 1, H, W])
        sensor_valid_camXs = __u(sensor_valid_camXs_) * __u(sensor_inbound_camXs_)
        ### .. Done making sensor depth images .. ##

        ### ... Sanity check ... Write to tensorboard ... ###
        summ_writer.summ_oneds('2D_inputs/depth_camXs', torch.unbind(__u(depth_camXs_), dim=1))
        summ_writer.summ_oneds('2D_inputs/valid_camXs', torch.unbind(valid_camXs, dim=1))
        summ_writer.summ_rgbs('2D_inputs/rgb_camXs', torch.unbind(rgb_camXs, dim=1))
        summ_writer.summ_rgbs('2D_inputs/rgb_camRs', torch.unbind(rgb_camRs, dim=1))
        summ_writer.summ_occs('3d_inputs/occXs', torch.unbind(__u(occXs_), dim=1), reduce_axes=[2])
        summ_writer.summ_unps('3d_inputs/unpXs', torch.unbind(__u(unpXs_), dim=1),\
            torch.unbind(__u(occXs_), dim=1))

        # A different approach for viewing occRs of sensors
        sensor_occRs = __u(sensor_occRs_)
        vis_sensor_occRs = torch.max(sensor_occRs, dim=1, keepdim=True)[0]
        # summ_writer.summ_occs('3d_inputs/sensor_occXs', torch.unbind(__u(sensor_occXs_), dim=1),
        #     reduce_axes=[2])
        summ_writer.summ_occs('3d_inputs/sensor_occRs', torch.unbind(vis_sensor_occRs, dim=1), reduce_axes=[2])

        ### ... code for visualizing sensor depths and sensor rgbs ... ###
        # summ_writer.summ_oneds('2D_inputs/depths_sensor', torch.unbind(sensor_depths, dim=1))
        # summ_writer.summ_rgbs('2D_inputs/rgbs_sensor', torch.unbind(sensor_rgbs, dim=1))
        # summ_writer.summ_oneds('2D_inputs/validXs_sensor', torch.unbind(sensor_valid_camXs, dim=1))

        if summ_writer.save_this:
            unpRs_ = utils_vox.unproject_rgb_to_mem(__p(rgb_camXs), Z, Y, X, matmul2(pix_T_cams_, camXs_T_camRs_))
            unpRs = __u(unpRs_)
            occRs_ = utils_vox.voxelize_xyz(xyz_camRs_, Z, Y, X)
            summ_writer.summ_occs('3d_inputs/occRs', torch.unbind(__u(occRs_), dim=1), reduce_axes=[2])
            summ_writer.summ_unps('3d_inputs/unpRs', torch.unbind(unpRs, dim=1),\
                torch.unbind(__u(occRs_), dim=1))
        ### ... Sanity check ... Writing to tensoboard complete ... ###
        results = list()

        mask_ = None
        ### ... Visual featnet part .... ###
        if hyp.do_feat:
            featXs_input = torch.cat([__u(occXs_), __u(occXs_)*__u(unpXs_)], dim=2)  # B, S, 4, H, W, D
            featXs_input_ = __p(featXs_input)

            freeXs_ = utils_vox.get_freespace(__p(xyz_camXs), occXs_half_)
            freeXs = __u(freeXs_)
            visXs = torch.clamp(__u(occXs_half_) + freeXs, 0.0, 1.0)

            if type(mask_) != type(None):
                assert(list(mask_.shape)[2:5] == list(featXs_input.shape)[2:5])
            featXs_, validXs_, _ = self.featnet(featXs_input_, summ_writer, mask=occXs_)
            # total_loss += feat_loss  # Note no need of loss

            validXs, featXs = __u(validXs_), __u(featXs_) # unpacked into B, S, C, D, H, W
            # bring everything to ref_frame
            validRs = utils_vox.apply_4x4_to_voxs(camRs_T_camXs, validXs)
            visRs = utils_vox.apply_4x4_to_voxs(camRs_T_camXs, visXs)
            featRs = utils_vox.apply_4x4_to_voxs(camRs_T_camXs, featXs)  # This is now in memory coordinates

            emb3D_e = torch.mean(featRs[:, 1:], dim=1)  # context, or the features of the scene
            emb3D_g = featRs[:, 0]  # this is to predict, basically I will pass emb3D_e as input and hope to predict emb3D_g
            vis3D_e = torch.max(validRs[:, 1:], dim=1)[0] * torch.max(visRs[:, 1:], dim=1)[0]
            vis3D_g = validRs[:, 0] * visRs[:, 0]

            #### ... I do not think I need this ... ####
            results = {}
        #     # if hyp.do_eval_recall:
        #     #     results['emb3D_e'] = emb3D_e
        #     #     results['emb3D_g'] = emb3D_g
        #     #### ... Check if you need the above

            summ_writer.summ_feats('3D_feats/featXs_input', torch.unbind(featXs_input, dim=1), pca=True)
            summ_writer.summ_feats('3D_feats/featXs_output', torch.unbind(featXs, dim=1), pca=True)
            summ_writer.summ_feats('3D_feats/featRs_output', torch.unbind(featRs, dim=1), pca=True)
            summ_writer.summ_feats('3D_feats/validRs', torch.unbind(validRs, dim=1), pca=False)
            summ_writer.summ_feat('3D_feats/vis3D_e', vis3D_e, pca=False)
            summ_writer.summ_feat('3D_feats/vis3D_g', vis3D_g, pca=False)

            # I need to aggregate the features and detach to prevent the backward pass on featnet
            featRs = torch.mean(featRs, dim=1)
            featRs = featRs.detach()
            #  ... HERE I HAVE THE VISUAL FEATURE TENSOR ... WHICH IS MADE USING 5 EVENLY SPACED VIEWS #

        # FOR THE TOUCH PART, I HAVE THE OCC and THE AIM IS TO PREDICT FEATURES FROM THEM #
        if hyp.do_touch_feat:
            # 1. Pass all the sensor depth images through the backbone network
            input_sensor_depths = __p(sensor_depths)
            sensor_features_ = self.backbone_2D(input_sensor_depths)

            # should normalize these feature tensors
            sensor_features_ = l2_normalize(sensor_features_, dim=1)

            sensor_features = __u(sensor_features_)
            assert torch.allclose(torch.norm(sensor_features_, dim=1), torch.Tensor([1.0]).cuda()),\
                "normalization has no effect on you huh."

            if hyp.do_eval_recall:
              results['sensor_features'] = sensor_features_
              results['sensor_depths'] = input_sensor_depths
              results['object_img'] = rgb_camRs
              results['sensor_imgs'] = __p(sensor_rgbs)

            # if moco is used do the same procedure as above but with a different network #
            if hyp.do_moc or hyp.do_eval_recall:
                # 1. Pass all the sensor depth images through the key network
                key_input_sensor_depths = copy.deepcopy(__p(sensor_depths)) # bx1024x1x16x16->(2048x1x16x16)
                self.key_touch_featnet.eval()
                with torch.no_grad():
                    key_sensor_features_ = self.key_touch_featnet(key_input_sensor_depths)

                key_sensor_features_ = l2_normalize(key_sensor_features_, dim=1)
                key_sensor_features = __u(key_sensor_features_)
                assert torch.allclose(torch.norm(key_sensor_features_, dim=1), torch.Tensor([1.0]).cuda()),\
                    "normalization has no effect on you huh."

        # doing the same procedure for moco but with a different network end #

        # do you want to do metric learning voxel point based using visual features and sensor features
        if hyp.do_touch_embML and not hyp.do_touch_forward:
            # trial 1: I do not pass the above obtained features through some encoder decoder in 3d
            # So compute the location is ref_frame which the center of these depth images will occupy
            # at all of these locations I will sample the from the visual tensor. It forms the positive pairs
            # negatives are simply everything except the positive
            sensor_depths_centers_x = center_sensor_W * torch.ones((hyp.B, hyp.sensor_S))
            sensor_depths_centers_x = sensor_depths_centers_x.cuda()
            sensor_depths_centers_y = center_sensor_H * torch.ones((hyp.B, hyp.sensor_S))
            sensor_depths_centers_y = sensor_depths_centers_y.cuda()
            sensor_depths_centers_z = sensor_depths[:, :, 0, center_sensor_H, center_sensor_W]

            # Next use Pixels2Camera to unproject all of these together.
            # merge the batch and the sequence dimension
            sensor_depths_centers_x = sensor_depths_centers_x.reshape(-1, 1, 1)  # BxHxW as required by Pixels2Camera
            sensor_depths_centers_y = sensor_depths_centers_y.reshape(-1, 1, 1)
            sensor_depths_centers_z = sensor_depths_centers_z.reshape(-1, 1, 1)

            fx, fy, x0, y0 = utils_geom.split_intrinsics(sensor_pix_T_cams_)
            sensor_depths_centers_in_camXs_ = utils_geom.Pixels2Camera(sensor_depths_centers_x, sensor_depths_centers_y,
                sensor_depths_centers_z, fx, fy, x0, y0)

            # finally use apply4x4 to get the locations in ref_cam
            sensor_depths_centers_in_ref_cam_ = utils_geom.apply_4x4(sensor_camRs_T_camXs_, sensor_depths_centers_in_camXs_)

            # NOTE: convert them to memory coordinates, the name is xyz so I presume it returns xyz but talk to ADAM
            sensor_depths_centers_in_mem_ = utils_vox.Ref2Mem(sensor_depths_centers_in_ref_cam_, Z2, Y2, X2)
            sensor_depths_centers_in_mem = sensor_depths_centers_in_mem_.reshape(hyp.B, hyp.sensor_S, -1)

            if debug:
                print('assert that you are not entering here')
                from IPython import embed; embed()
                # form a (0, 1) volume here at these locations and see if it resembles a cup
                dim1 = X2 * Y2 * Z2
                dim2 = X2 * Y2
                dim3 = X2
                binary_voxel_grid = torch.zeros((hyp.B, X2, Y2, Z2))
                # NOTE: Z is the leading dimension
                rounded_idxs = torch.round(sensor_depths_centers_in_mem)
                flat_idxs = dim2 * rounded_idxs[0, :, 0] + dim3 * rounded_idxs[0, :, 1] + rounded_idxs[0, :, 2]
                flat_idxs1 = dim2 * rounded_idxs[1, :, 0] + dim3 * rounded_idxs[1, :, 1] + rounded_idxs[1, :, 2]
                flat_idxs1 = flat_idxs1 + dim1
                flat_idxs1 = flat_idxs1.long()
                flat_idxs = flat_idxs.long()

                flattened_grid = binary_voxel_grid.flatten()
                flattened_grid[flat_idxs] = 1.
                flattened_grid[flat_idxs1] = 1.

                binary_voxel_grid = flattened_grid.view(B, X2, Y2, Z2)

                assert binary_voxel_grid[0].sum() == len(torch.unique(flat_idxs)), "some indexes are missed here"
                assert binary_voxel_grid[1].sum() == len(torch.unique(flat_idxs1)), "some indexes are missed here"

                # o3d.io.write_voxel_grid("forward_pass_save/grid0.ply", binary_voxel_grid[0])
                # o3d.io.write_voxel_grid("forward_pass_save/grid1.ply", binary_voxel_grid[0])
                # need to save these voxels
                save_voxel(binary_voxel_grid[0].cpu().numpy(), "forward_pass_save/grid0.binvox")
                save_voxel(binary_voxel_grid[1].cpu().numpy(), "forward_pass_save/grid1.binvox")
                from IPython import embed; embed()

            # use grid sample to get the visual touch tensor at these locations, NOTE: visual tensor features shape is (B, C, N)
            visual_tensor_features = utils_samp.bilinear_sample3D(featRs, sensor_depths_centers_in_mem[:, :, 0],
                sensor_depths_centers_in_mem[:, :, 1], sensor_depths_centers_in_mem[:, :, 2])
            visual_feature_tensor = visual_tensor_features.permute(0, 2, 1)
            # pack it
            visual_feature_tensor_ = __p(visual_feature_tensor)
            C = list(visual_feature_tensor.shape)[-1]
            print('C=', C)

            # do the metric learning this is the same as before.
            # the code is basically copied from embnet3d.py but some changes are being made very minor
            emb_vec = torch.stack((sensor_features_, visual_feature_tensor_), dim=1).view(B*self.num_samples*self.batch_k, C)
            y = torch.stack([torch.range(0,self.num_samples*B-1), torch.range(0,self.num_samples*B-1)], dim=1).view(self.num_samples*B*self.batch_k)
            a_indices, anchors, positives, negatives, _ = self.sampler(emb_vec)

            # I need to write my own version of margin loss since the negatives and anchors may not be same dim
            d_ap = torch.sqrt(torch.sum((positives - anchors)**2, dim=1) + 1e-8)
            pos_loss = torch.clamp(d_ap - beta + self._margin, min=0.0)

            # TODO: expand the dims of anchors and tile them and compute the negative loss

            # do the pair count where you average by contributors only

            # this is your total loss


            # Further idea is to check what volumetric locations do each of the depth images corresponds to
            # unproject the entire depth image and convert to ref. and then sample.

        if hyp.do_touch_forward:
            ## ... Begin code for getting crops from visual memory ... ##
            sensor_depths_centers_x = center_sensor_W * torch.ones((hyp.B, hyp.sensor_S))
            sensor_depths_centers_x = sensor_depths_centers_x.cuda()
            sensor_depths_centers_y = center_sensor_H * torch.ones((hyp.B, hyp.sensor_S))
            sensor_depths_centers_y = sensor_depths_centers_y.cuda()
            sensor_depths_centers_z = sensor_depths[:, :, 0, center_sensor_H, center_sensor_W]

            # Next use Pixels2Camera to unproject all of these together.
            # merge the batch and the sequence dimension
            sensor_depths_centers_x = sensor_depths_centers_x.reshape(-1, 1, 1)
            sensor_depths_centers_y = sensor_depths_centers_y.reshape(-1, 1, 1)
            sensor_depths_centers_z = sensor_depths_centers_z.reshape(-1, 1, 1)

            fx, fy, x0, y0 = utils_geom.split_intrinsics(sensor_pix_T_cams_)
            sensor_depths_centers_in_camXs_ = utils_geom.Pixels2Camera(sensor_depths_centers_x, sensor_depths_centers_y,
                sensor_depths_centers_z, fx, fy, x0, y0)
            sensor_depths_centers_in_world_ = utils_geom.apply_4x4(sensor_origin_T_camXs_, sensor_depths_centers_in_camXs_)  # not used by the algorithm
            ## this will be later used for visualization hence saving it here for now
            sensor_depths_centers_in_ref_cam_ = utils_geom.apply_4x4(sensor_camRs_T_camXs_, sensor_depths_centers_in_camXs_)  # not used by the algorithm

            sensor_depths_centers_in_camXs = __u(sensor_depths_centers_in_camXs_).squeeze(2)

            # There has to be a better way to do this, for each of the cameras in the batch I want a box of size (ch, cw, cd)
            # TODO: rotation is the deviation of the box from the axis aligned do I want this
            tB, tN, _ = list(sensor_depths_centers_in_camXs.shape)  # 2, 512, _
            boxlist = torch.zeros(tB, tN, 9)  # 2, 512, 9
            boxlist[:, :, :3] = sensor_depths_centers_in_camXs  # this lies on the object
            boxlist[:, :, 3:6] = torch.FloatTensor([hyp.contextW, hyp.contextH, hyp.contextD])

            # convert the boxlist to lrtlist and to cuda
            # the rt here transforms the from box coordinates to camera coordinates
            box_lrtlist = utils_geom.convert_boxlist_to_lrtlist(boxlist)

            # Now I will use crop_zoom_from_mem functionality to get the features in each of the boxes
            # I will do it for each of the box separately as required by the api
            context_grid_list = list()
            for m in range(box_lrtlist.shape[1]):
                curr_box = box_lrtlist[:, m, :]
                context_grid = utils_vox.crop_zoom_from_mem(featRs, curr_box, 8, 8, 8,
                    sensor_camRs_T_camXs[:, m, :, :])
                context_grid_list.append(context_grid)
            context_grid_list = torch.stack(context_grid_list, dim=1)
            context_grid_list_ = __p(context_grid_list)
            ## ... till here I believe I have not introduced any randomness, so the points are still in
            ## ... End code for getting crops around this center of certain height, width and depth ... ##

            ## ... Begin code for passing the context grid through 3D CNN to obtain a vector ... ##
            sensor_cam_locs = feed['sensor_locs']  # these are in origin coordinates
            sensor_cam_quats = feed['sensor_quats'] # this too in in world_coordinates
            sensor_cam_locs_ = __p(sensor_cam_locs)
            sensor_cam_quats_ = __p(sensor_cam_quats)
            sensor_cam_locs_in_R_ = utils_geom.apply_4x4(sensor_camRs_T_origin_, sensor_cam_locs_.unsqueeze(1)).squeeze(1)
            # TODO TODO TODO confirm that this is right? TODO TODO TODO
            get_r_mat = lambda cam_quat: transformations.quaternion_matrix_py(cam_quat)
            rot_mat_Xs_ = torch.from_numpy(np.stack(list(map(get_r_mat, sensor_cam_quats_.cpu().numpy())))).to(sensor_cam_locs_.device).float()
            rot_mat_Rs_ = torch.bmm(sensor_camRs_T_origin_, rot_mat_Xs_)
            get_quat = lambda r_mat: transformations.quaternion_from_matrix_py(r_mat)
            sensor_quats_in_R_ = torch.from_numpy(np.stack(list(map(get_quat, rot_mat_Rs_.cpu().numpy())))).to(sensor_cam_locs_.device).float()

            pred_features_ = self.context_net(context_grid_list_,\
                sensor_cam_locs_in_R_, sensor_quats_in_R_)

            # normalize
            pred_features_ = l2_normalize(pred_features_, dim=1)
            pred_features = __u(pred_features_)

            # if doing moco I have to pass the inputs through the key(slow) network as well #
            if hyp.do_moc or hyp.do_eval_recall:
                key_context_grid_list_ = copy.deepcopy(context_grid_list_)
                key_sensor_cam_locs_in_R_ = copy.deepcopy(sensor_cam_locs_in_R_)
                key_sensor_quats_in_R_ = copy.deepcopy(sensor_quats_in_R_)
                self.key_context_net.eval()
                with torch.no_grad():
                    key_pred_features_ = self.key_context_net(key_context_grid_list_,\
                        key_sensor_cam_locs_in_R_, key_sensor_quats_in_R_)

                # normalize, normalization is very important why though
                key_pred_features_ = l2_normalize(key_pred_features_, dim=1)
                key_pred_features = __u(key_pred_features_)
            # end passing of the input through the slow network this is necessary for moco #
            ## ... End code for passing the context grid through 3D CNN to obtain a vector ... ##

        ## ... Begin code for doing metric learning between pred_features and sensor features ... ##
        # 1. Subsample both based on the number of positive samples
        if hyp.do_touch_embML:
            assert(hyp.do_touch_forward)
            assert(hyp.do_touch_feat)
            perm = torch.randperm(len(pred_features_))  ## 1024
            chosen_sensor_feats_ = sensor_features_[perm[:self.num_pos_samples*hyp.B]]
            chosen_pred_feats_ = pred_features_[perm[:self.num_pos_samples*B]]

            # 2. form the emb_vec and get pos and negative samples for the batch
            emb_vec = torch.stack((chosen_sensor_feats_, chosen_pred_feats_), dim=1).view(hyp.B*self.num_pos_samples*self.batch_k, -1)
            y = torch.stack([torch.range(0, self.num_pos_samples*B-1), torch.range(0, self.num_pos_samples*B-1)],\
                dim=1).view(B*self.num_pos_samples*self.batch_k) # (0, 0, 1, 1, ..., 255, 255)

            a_indices, anchors, positives, negatives, _ = self.sampler(emb_vec)

            # 3. Compute the loss, ML loss and the l2 distance betwee the embeddings
            margin_loss, _ = self.criterion(anchors, positives, negatives, self.beta, y[a_indices])
            total_loss = utils_misc.add_loss('embtouch/emb_touch_ml_loss', total_loss, margin_loss,
                hyp.emb_3D_ml_coeff, summ_writer)

            # the l2 loss between the embeddings
            l2_loss = torch.nn.functional.mse_loss(chosen_sensor_feats_, chosen_pred_feats_)
            total_loss = utils_misc.add_loss('embtouch/emb_l2_loss', total_loss, l2_loss,
                hyp.emb_3D_l2_coeff, summ_writer)
        ## ... End code for doing metric learning between pred_features and sensor_features ... ##

        ## ... Begin code for doing moc inspired ML between pred_features and sensor_features ... ##
        if hyp.do_moc and moc_init_done:
            moc_loss = self.moc_ml_net(sensor_features_, key_sensor_features_,\
                pred_features_, key_pred_features_, summ_writer)
            total_loss += moc_loss
        ## ... End code for doing moc inspired ML between pred_features and sensor_feature ... ##

        ## ... add code for filling up results needed for eval recall ... ##
        if hyp.do_eval_recall and moc_init_done:
            results['context_features'] = pred_features_
            results['sensor_depth_centers_in_world'] = sensor_depths_centers_in_world_
            results['sensor_depths_centers_in_ref_cam'] = sensor_depths_centers_in_ref_cam_
            results['object_name'] = feed['object_name']

            # I will do precision recall here at different recall values and summarize it using tensorboard
            recalls = [1, 5, 10, 50, 100, 200]
            # also should not include any gradients because of this
            # fast_sensor_emb_e = sensor_features_
            # fast_context_emb_e = pred_features_
            # slow_sensor_emb_g = key_sensor_features_
            # slow_context_emb_g = key_context_features_
            fast_sensor_emb_e = sensor_features_.clone().detach()
            fast_context_emb_e = pred_features_.clone().detach()

            # I will do multiple eval recalls here
            slow_sensor_emb_g = key_sensor_features_.clone().detach()
            slow_context_emb_g = key_pred_features_.clone().detach()

            # assuming the above thing goes well
            fast_sensor_emb_e = fast_sensor_emb_e.cpu().numpy()
            fast_context_emb_e = fast_context_emb_e.cpu().numpy()
            slow_sensor_emb_g = slow_sensor_emb_g.cpu().numpy()
            slow_context_emb_g = slow_context_emb_g.cpu().numpy()

            # now also move the vis to numpy and plot it using matplotlib
            vis_e = __p(sensor_rgbs)
            vis_g = __p(sensor_rgbs)
            np_vis_e = vis_e.cpu().detach().numpy()
            np_vis_e = np.transpose(np_vis_e, [0, 2, 3, 1])
            np_vis_g = vis_g.cpu().detach().numpy()
            np_vis_g = np.transpose(np_vis_g, [0, 2, 3, 1])

            # bring it back to original color
            np_vis_g = ((np_vis_g+0.5) * 255).astype(np.uint8)
            np_vis_e = ((np_vis_e+0.5) * 255).astype(np.uint8)

            # now compare fast_sensor_emb_e with slow_context_emb_g
            # since I am doing positive against this
            fast_sensor_emb_e_list = [fast_sensor_emb_e, np_vis_e]
            slow_context_emb_g_list = [slow_context_emb_g, np_vis_g]

            prec, vis, chosen_inds_and_neighbors_inds = compute_precision(
                fast_sensor_emb_e_list, slow_context_emb_g_list, recalls=recalls
            )

            # finally plot the nearest neighbour retrieval and move ahead
            if feed['global_step'] % 1 == 0:
                plot_nearest_neighbours(vis, step=feed['global_step'],
                                        save_dir='/home/gauravp/eval_results',
                                        name='fast_sensor_slow_context')

            # plot the precisions at different recalls
            for pr, re in enumerate(recalls):
                summ_writer.summ_scalar(f'evrefast_sensor_slow_context/recall@{re}',\
                    prec[pr])

            # now compare fast_context_emb_e with slow_sensor_emb_g
            fast_context_emb_e_list = [fast_context_emb_e, np_vis_e]
            slow_sensor_emb_g_list = [slow_sensor_emb_g, np_vis_g]

            prec, vis, chosen_inds_and_neighbors_inds = compute_precision(
                fast_context_emb_e_list, slow_sensor_emb_g_list, recalls=recalls
            )
            if feed['global_step'] % 1 == 0:
                plot_nearest_neighbours(vis, step=feed['global_step'],
                                        save_dir='/home/gauravp/eval_results',
                                        name='fast_context_slow_sensor')

            # plot the precisions at different recalls
            for pr, re in enumerate(recalls):
                summ_writer.summ_scalar(f'evrefast_context_slow_sensor/recall@{re}',\
                    prec[pr])


            # now finally compare both the fast, I presume we want them to go closer too
            fast_sensor_list = [fast_sensor_emb_e, np_vis_e]
            fast_context_list = [fast_context_emb_e, np_vis_g]

            prec, vis, chosen_inds_and_neighbors_inds = compute_precision(
                fast_sensor_list, fast_context_list, recalls=recalls
            )
            if feed['global_step'] % 1 == 0:
                plot_nearest_neighbours(vis, step=feed['global_step'],
                                        save_dir='/home/gauravp/eval_results',
                                        name='fast_sensor_fast_context')

            for pr, re in enumerate(recalls):
                summ_writer.summ_scalar(f'evrefast_sensor_fast_context/recall@{re}',\
                    prec[pr])

        ## ... done code for filling up results needed for eval recall ... ##
        summ_writer.summ_scalar('loss', total_loss.cpu().item())
        return total_loss, results, [key_sensor_features_, key_pred_features_]
    def forward(self, feed):
        results = dict()
        summ_writer = utils_improc.Summ_writer(writer=feed['writer'],
                                               global_step=feed['global_step'],
                                               set_name=feed['set_name'],
                                               fps=8)

        writer = feed['writer']
        global_step = feed['global_step']

        total_loss = torch.tensor(0.0)

        __p = lambda x: pack_seqdim(x, B)
        __u = lambda x: unpack_seqdim(x, B)

        B, H, W, V, S, N = hyp.B, hyp.H, hyp.W, hyp.V, hyp.S, hyp.N
        PH, PW = hyp.PH, hyp.PW
        K = hyp.K
        Z, Y, X = hyp.Z, hyp.Y, hyp.X
        Z2, Y2, X2 = int(Z / 2), int(Y / 2), int(X / 2)
        D = 9

        rgb_camRs = feed["rgb_camRs"]
        rgb_camXs = feed["rgb_camXs"]
        pix_T_cams = feed["pix_T_cams"]
        cam_T_velos = feed["cam_T_velos"]
        boxlist_camRs = feed["boxes3D"]
        tidlist_s = feed["tids"]  # coordinate-less and plural
        scorelist_s = feed["scores"]  # coordinate-less and plural
        # # postproc the boxes:
        # scorelist_s = __u(utils_misc.rescore_boxlist_with_inbound(__p(boxlist_camRs), __p(tidlist_s), Z, Y, X))
        boxlist_camRs_, tidlist_s_, scorelist_s_ = __p(boxlist_camRs), __p(
            tidlist_s), __p(scorelist_s)
        boxlist_camRs_, tidlist_s_, scorelist_s_ = utils_misc.shuffle_valid_and_sink_invalid_boxes(
            boxlist_camRs_, tidlist_s_, scorelist_s_)
        boxlist_camRs = __u(boxlist_camRs_)
        tidlist_s = __u(tidlist_s_)
        scorelist_s = __u(scorelist_s_)

        origin_T_camRs = feed["origin_T_camRs"]
        origin_T_camRs_ = __p(origin_T_camRs)
        origin_T_camXs = feed["origin_T_camXs"]
        origin_T_camXs_ = __p(origin_T_camXs)

        camX0_T_camXs = utils_geom.get_camM_T_camXs(origin_T_camXs, ind=0)
        camX0_T_camXs_ = __p(camX0_T_camXs)
        camRs_T_camXs_ = torch.matmul(origin_T_camRs_.inverse(),
                                      origin_T_camXs_)
        camXs_T_camRs_ = camRs_T_camXs_.inverse()
        camRs_T_camXs = __u(camRs_T_camXs_)
        camXs_T_camRs = __u(camXs_T_camRs_)

        xyz_veloXs = feed["xyz_veloXs"]
        xyz_camXs = __u(utils_geom.apply_4x4(__p(cam_T_velos),
                                             __p(xyz_veloXs)))
        xyz_camRs = __u(
            utils_geom.apply_4x4(__p(camRs_T_camXs), __p(xyz_camXs)))
        xyz_camX0s = __u(
            utils_geom.apply_4x4(__p(camX0_T_camXs), __p(xyz_camXs)))

        occRs = __u(utils_vox.voxelize_xyz(__p(xyz_camRs), Z, Y, X))
        occXs = __u(utils_vox.voxelize_xyz(__p(xyz_camXs), Z, Y, X))
        occX0s = __u(utils_vox.voxelize_xyz(__p(xyz_camX0s), Z, Y, X))

        occRs_half = __u(utils_vox.voxelize_xyz(__p(xyz_camRs), Z2, Y2, X2))
        occXs_half = __u(utils_vox.voxelize_xyz(__p(xyz_camXs), Z2, Y2, X2))
        occX0s_half = __u(utils_vox.voxelize_xyz(__p(xyz_camX0s), Z2, Y2, X2))

        unpRs = __u(
            utils_vox.unproject_rgb_to_mem(
                __p(rgb_camXs), Z, Y, X,
                __p(torch.matmul(pix_T_cams, camXs_T_camRs))))
        unpXs = __u(
            utils_vox.unproject_rgb_to_mem(__p(rgb_camXs), Z, Y, X,
                                           __p(pix_T_cams)))
        unpX0s = utils_vox.apply_4x4_to_voxs(camX0_T_camXs, unpXs)

        unpRs_half = __u(
            utils_vox.unproject_rgb_to_mem(
                __p(rgb_camXs), Z2, Y2, X2,
                __p(torch.matmul(pix_T_cams, camXs_T_camRs))))

        #####################
        ## visualize what we got
        #####################
        summ_writer.summ_rgbs('2D_inputs/rgb_camRs',
                              torch.unbind(rgb_camRs, dim=1))
        summ_writer.summ_rgbs('2D_inputs/rgb_camXs',
                              torch.unbind(rgb_camXs, dim=1))
        summ_writer.summ_occs('3D_inputs/occRs', torch.unbind(occRs, dim=1))
        summ_writer.summ_occs('3D_inputs/occXs', torch.unbind(occXs, dim=1))
        summ_writer.summ_unps('3D_inputs/unpRs', torch.unbind(unpRs, dim=1),
                              torch.unbind(occRs, dim=1))
        summ_writer.summ_unps('3D_inputs/unpXs', torch.unbind(unpXs, dim=1),
                              torch.unbind(occXs, dim=1))
        summ_writer.summ_unps('3D_inputs/unpX0s', torch.unbind(unpX0s, dim=1),
                              torch.unbind(occX0s, dim=1))

        lrtlist_camRs = __u(
            utils_geom.convert_boxlist_to_lrtlist(boxlist_camRs_)).reshape(
                B, S, N, 19)
        lrtlist_camXs = __u(
            utils_geom.apply_4x4_to_lrtlist(__p(camXs_T_camRs),
                                            __p(lrtlist_camRs)))
        # stabilize boxes for ego/cam motion
        lrtlist_camX0s = __u(
            utils_geom.apply_4x4_to_lrtlist(__p(camX0_T_camXs),
                                            __p(lrtlist_camXs)))
        # these are is B x S x N x 19

        summ_writer.summ_lrtlist('lrtlist_camR0', rgb_camRs[:, 0],
                                 lrtlist_camRs[:, 0], scorelist_s[:, 0],
                                 tidlist_s[:, 0], pix_T_cams[:, 0])
        summ_writer.summ_lrtlist('lrtlist_camR1', rgb_camRs[:, 1],
                                 lrtlist_camRs[:, 1], scorelist_s[:, 1],
                                 tidlist_s[:, 1], pix_T_cams[:, 1])
        summ_writer.summ_lrtlist('lrtlist_camX0', rgb_camXs[:, 0],
                                 lrtlist_camXs[:, 0], scorelist_s[:, 0],
                                 tidlist_s[:, 0], pix_T_cams[:, 0])
        summ_writer.summ_lrtlist('lrtlist_camX1', rgb_camXs[:, 1],
                                 lrtlist_camXs[:, 1], scorelist_s[:, 1],
                                 tidlist_s[:, 1], pix_T_cams[:, 1])
        (
            obj_lrtlist_camXs,
            obj_scorelist_s,
        ) = utils_misc.collect_object_info(lrtlist_camXs,
                                           tidlist_s,
                                           scorelist_s,
                                           pix_T_cams,
                                           K,
                                           mod='X',
                                           do_vis=True,
                                           summ_writer=summ_writer)
        (
            obj_lrtlist_camRs,
            obj_scorelist_s,
        ) = utils_misc.collect_object_info(lrtlist_camRs,
                                           tidlist_s,
                                           scorelist_s,
                                           pix_T_cams,
                                           K,
                                           mod='R',
                                           do_vis=True,
                                           summ_writer=summ_writer)
        (
            obj_lrtlist_camX0s,
            obj_scorelist_s,
        ) = utils_misc.collect_object_info(lrtlist_camX0s,
                                           tidlist_s,
                                           scorelist_s,
                                           pix_T_cams,
                                           K,
                                           mod='X0',
                                           do_vis=False)

        masklist_memR = utils_vox.assemble_padded_obj_masklist(
            lrtlist_camRs[:, 0], scorelist_s[:, 0], Z, Y, X, coeff=1.0)
        masklist_memX = utils_vox.assemble_padded_obj_masklist(
            lrtlist_camXs[:, 0], scorelist_s[:, 0], Z, Y, X, coeff=1.0)
        # obj_mask_memR is B x N x 1 x Z x Y x X
        summ_writer.summ_occ('obj/masklist_memR',
                             torch.sum(masklist_memR, dim=1))
        summ_writer.summ_occ('obj/masklist_memX',
                             torch.sum(masklist_memX, dim=1))

        # to do tracking or whatever, i need to be able to extract a 3d object crop
        cropX0_obj0 = utils_vox.crop_zoom_from_mem(occXs[:, 0],
                                                   lrtlist_camXs[:, 0, 0], Z2,
                                                   Y2, X2)
        cropX0_obj1 = utils_vox.crop_zoom_from_mem(occXs[:, 0],
                                                   lrtlist_camXs[:, 0, 1], Z2,
                                                   Y2, X2)
        cropR0_obj0 = utils_vox.crop_zoom_from_mem(occRs[:, 0],
                                                   lrtlist_camRs[:, 0, 0], Z2,
                                                   Y2, X2)
        cropR0_obj1 = utils_vox.crop_zoom_from_mem(occRs[:, 0],
                                                   lrtlist_camRs[:, 0, 1], Z2,
                                                   Y2, X2)
        # print('got it:')
        # print(cropX00.shape)
        # summ_writer.summ_occ('crops/cropX0_obj0', cropX0_obj0)
        # summ_writer.summ_occ('crops/cropX0_obj1', cropX0_obj1)
        summ_writer.summ_feat('crops/cropX0_obj0', cropX0_obj0, pca=False)
        summ_writer.summ_feat('crops/cropX0_obj1', cropX0_obj1, pca=False)
        summ_writer.summ_feat('crops/cropR0_obj0', cropR0_obj0, pca=False)
        summ_writer.summ_feat('crops/cropR0_obj1', cropR0_obj1, pca=False)

        if hyp.do_feat:
            if hyp.flow_do_synth_rt:
                result = utils_misc.get_synth_flow(unpRs_half,
                                                   occRs_half,
                                                   obj_lrtlist_camX0s,
                                                   obj_scorelist_s,
                                                   occXs_half,
                                                   feed['set_name'],
                                                   K=K,
                                                   summ_writer=summ_writer,
                                                   sometimes_zero=True,
                                                   sometimes_real=False)
                occXs, unpXs, flowX0, camX1_T_camX0, is_synth = result
            else:
                # ego-stabilized flow from X00 to X01
                flowX0 = utils_misc.get_gt_flow(
                    obj_lrtlist_camX0s,
                    obj_scorelist_s,
                    utils_geom.eye_4x4s(B, S),
                    occXs_half[:, 0],
                    K=K,
                    occ_only=False,  # get the dense flow
                    mod='X0',
                    summ_writer=summ_writer)

            # occXs is B x S x 1 x H x W x D
            # unpXs is B x S x 3 x H x W x D
            # featXs_input = torch.cat([occXs, occXs*unpXs], dim=2)
            featX0s_input = torch.cat([occX0s, occX0s * unpX0s], dim=2)
            featX0s_input_ = __p(featX0s_input)
            featX0s_, validX0s_, feat_loss = self.featnet(
                featX0s_input_, summ_writer)
            total_loss += feat_loss
            featX0s = __u(featX0s_)
            # _featX00 = featXs[:,0:1]
            # _featX01 = utils_vox.apply_4x4_to_voxs(camX0_T_camXs[:,1:], featXs[:,1:])
            # featX0s = torch.cat([_featX00, _featX01], dim=1)

            validX0s = 1.0 - (featX0s == 0).all(
                dim=2,
                keepdim=True).float()  #this shall be B x S x 1 x H x W x D

            summ_writer.summ_feats('3D_feats/featX0s_input',
                                   torch.unbind(featX0s_input, dim=1),
                                   pca=True)
            # summ_writer.summ_feats('3D_feats/featXs_output', torch.unbind(featXs, dim=1), pca=True)
            summ_writer.summ_feats('3D_feats/featX0s_output',
                                   torch.unbind(featX0s, dim=1),
                                   pca=True)

        if hyp.do_flow:
            # total flow from X0 to X1
            flowX = utils_misc.get_gt_flow(
                obj_lrtlist_camXs,
                obj_scorelist_s,
                camX0_T_camXs,
                occXs_half[:, 0],
                K=K,
                occ_only=False,  # get the dense flow
                mod='X',
                vis=False,
                summ_writer=None)

            # # vis this to confirm it's ok (it is)
            # unpX0_e = utils_samp.backwarp_using_3D_flow(unpXs[:,1], flowX)
            # occX0_e = utils_samp.backwarp_using_3D_flow(occXs[:,1], flowX)
            # summ_writer.summ_unps('flow/backwarpX', [unpX0s[:,0], unpX0_e], [occXs[:,0], occX0_e])

            # unpX0_e = utils_samp.backwarp_using_3D_flow(unpX0s[:,1], flowX0)
            # occX0_e = utils_samp.backwarp_using_3D_flow(occX0s[:,1], flowX0, binary_feat=True)
            # summ_writer.summ_unps('flow/backwarpX0', [unpX0s[:,0], unpX0_e], [occXs[:,0], occX0_e])

            flow_loss, flowX0_pred = self.flownet(
                featX0s[:, 0],
                featX0s[:, 1],
                flowX0,  # gt flow
                torch.max(validX0s[:, 1:], dim=1)[0],
                is_synth,
                summ_writer)
            total_loss += flow_loss

            # g = flowX.reshape(-1)
            # summ_writer.summ_histogram('flowX_g_nonzero_hist', g[torch.abs(g)>0.01])

            # g = flowX0.reshape(-1)
            # e = flowX0_pred.reshape(-1)
            # summ_writer.summ_histogram('flowX0_g_nonzero_hist', g[torch.abs(g)>0.01])
            # summ_writer.summ_histogram('flowX0_e_nonzero_hist', e[torch.abs(g)>0.01])

        summ_writer.summ_scalar('loss', total_loss.cpu().item())
        return total_loss, results
Exemplo n.º 7
0
    def forward(self, feed):
        results = dict()

        if 'log_freq' not in feed.keys():
            feed['log_freq'] = None
        start_time = time.time()

        summ_writer = utils_improc.Summ_writer(writer=feed['writer'],
                                               global_step=feed['global_step'],
                                               set_name=feed['set_name'],
                                               log_freq=feed['log_freq'],
                                               fps=8)
        writer = feed['writer']
        global_step = feed['global_step']

        total_loss = torch.tensor(0.0).cuda()
        __p = lambda x: utils_basic.pack_seqdim(x, B)
        __u = lambda x: utils_basic.unpack_seqdim(x, B)

        __pb = lambda x: utils_basic.pack_boxdim(x, hyp.N)
        __ub = lambda x: utils_basic.unpack_boxdim(x, hyp.N)
        if hyp.aug_object_ent_dis:
            __pb_a = lambda x: utils_basic.pack_boxdim(
                x, hyp.max_obj_aug + hyp.max_obj_aug_dis)
            __ub_a = lambda x: utils_basic.unpack_boxdim(
                x, hyp.max_obj_aug + hyp.max_obj_aug_dis)
        else:
            __pb_a = lambda x: utils_basic.pack_boxdim(x, hyp.max_obj_aug)
            __ub_a = lambda x: utils_basic.unpack_boxdim(x, hyp.max_obj_aug)

        B, H, W, V, S, N = hyp.B, hyp.H, hyp.W, hyp.V, hyp.S, hyp.N
        PH, PW = hyp.PH, hyp.PW
        K = hyp.K
        BOX_SIZE = hyp.BOX_SIZE
        Z, Y, X = hyp.Z, hyp.Y, hyp.X
        Z2, Y2, X2 = int(Z / 2), int(Y / 2), int(X / 2)
        Z4, Y4, X4 = int(Z / 4), int(Y / 4), int(X / 4)
        D = 9

        tids = torch.from_numpy(np.reshape(np.arange(B * N), [B, N]))

        rgb_camXs = feed["rgb_camXs_raw"]
        pix_T_cams = feed["pix_T_cams_raw"]
        camRs_T_origin = feed["camR_T_origin_raw"]
        origin_T_camRs = __u(utils_geom.safe_inverse(__p(camRs_T_origin)))
        origin_T_camXs = feed["origin_T_camXs_raw"]
        camX0_T_camXs = utils_geom.get_camM_T_camXs(origin_T_camXs, ind=0)
        camRs_T_camXs = __u(
            torch.matmul(utils_geom.safe_inverse(__p(origin_T_camRs)),
                         __p(origin_T_camXs)))
        camXs_T_camRs = __u(utils_geom.safe_inverse(__p(camRs_T_camXs)))
        camX0_T_camRs = camXs_T_camRs[:, 0]
        camX1_T_camRs = camXs_T_camRs[:, 1]

        camR_T_camX0 = utils_geom.safe_inverse(camX0_T_camRs)

        xyz_camXs = feed["xyz_camXs_raw"]
        depth_camXs_, valid_camXs_ = utils_geom.create_depth_image(
            __p(pix_T_cams), __p(xyz_camXs), H, W)
        dense_xyz_camXs_ = utils_geom.depth2pointcloud(depth_camXs_,
                                                       __p(pix_T_cams))

        xyz_camRs = __u(
            utils_geom.apply_4x4(__p(camRs_T_camXs), __p(xyz_camXs)))
        xyz_camX0s = __u(
            utils_geom.apply_4x4(__p(camX0_T_camXs), __p(xyz_camXs)))

        occXs = __u(utils_vox.voxelize_xyz(__p(xyz_camXs), Z, Y, X))

        occXs_to_Rs = utils_vox.apply_4x4s_to_voxs(camRs_T_camXs, occXs)
        occXs_to_Rs_45 = cross_corr.rotate_tensor_along_y_axis(occXs_to_Rs, 45)
        occXs_half = __u(utils_vox.voxelize_xyz(__p(xyz_camXs), Z2, Y2, X2))
        occRs_half = __u(utils_vox.voxelize_xyz(__p(xyz_camRs), Z2, Y2, X2))
        occX0s_half = __u(utils_vox.voxelize_xyz(__p(xyz_camX0s), Z2, Y2, X2))

        unpXs = __u(
            utils_vox.unproject_rgb_to_mem(__p(rgb_camXs), Z, Y, X,
                                           __p(pix_T_cams)))

        unpXs_half = __u(
            utils_vox.unproject_rgb_to_mem(__p(rgb_camXs), Z2, Y2, X2,
                                           __p(pix_T_cams)))

        unpX0s_half = __u(
            utils_vox.unproject_rgb_to_mem(
                __p(rgb_camXs), Z2, Y2, X2,
                utils_basic.matmul2(
                    __p(pix_T_cams),
                    utils_geom.safe_inverse(__p(camX0_T_camXs)))))

        unpRs = __u(
            utils_vox.unproject_rgb_to_mem(
                __p(rgb_camXs), Z, Y, X,
                utils_basic.matmul2(
                    __p(pix_T_cams),
                    utils_geom.safe_inverse(__p(camRs_T_camXs)))))

        unpRs_half = __u(
            utils_vox.unproject_rgb_to_mem(
                __p(rgb_camXs), Z2, Y2, X2,
                utils_basic.matmul2(
                    __p(pix_T_cams),
                    utils_geom.safe_inverse(__p(camRs_T_camXs)))))

        dense_xyz_camRs_ = utils_geom.apply_4x4(__p(camRs_T_camXs),
                                                dense_xyz_camXs_)
        inbound_camXs_ = utils_vox.get_inbounds(dense_xyz_camRs_, Z, Y,
                                                X).float()
        inbound_camXs_ = torch.reshape(inbound_camXs_, [B * S, 1, H, W])

        depth_camXs = __u(depth_camXs_)
        valid_camXs = __u(valid_camXs_) * __u(inbound_camXs_)

        summ_writer.summ_oneds('2D_inputs/depth_camXs',
                               torch.unbind(depth_camXs, dim=1),
                               maxdepth=21.0)
        summ_writer.summ_oneds('2D_inputs/valid_camXs',
                               torch.unbind(valid_camXs, dim=1))
        summ_writer.summ_rgbs('2D_inputs/rgb_camXs',
                              torch.unbind(rgb_camXs, dim=1))
        summ_writer.summ_occs('3D_inputs/occXs', torch.unbind(occXs, dim=1))
        summ_writer.summ_unps('3D_inputs/unpXs', torch.unbind(unpXs, dim=1),
                              torch.unbind(occXs, dim=1))

        occRs = __u(utils_vox.voxelize_xyz(__p(xyz_camRs), Z, Y, X))

        if hyp.do_eval_boxes:
            if hyp.dataset_name == "clevr_vqa":
                gt_boxes_origin_corners = feed['gt_box']
                gt_scores_origin = feed['gt_scores'].detach().cpu().numpy()
                classes = feed['classes']
                scores = gt_scores_origin
                tree_seq_filename = feed['tree_seq_filename']
                gt_boxes_origin = nlu.get_ends_of_corner(
                    gt_boxes_origin_corners)
                gt_boxes_origin_end = torch.reshape(gt_boxes_origin,
                                                    [hyp.B, hyp.N, 2, 3])
                gt_boxes_origin_theta = nlu.get_alignedboxes2thetaformat(
                    gt_boxes_origin_end)
                gt_boxes_origin_corners = utils_geom.transform_boxes_to_corners(
                    gt_boxes_origin_theta)
                gt_boxesR_corners = __ub(
                    utils_geom.apply_4x4(camRs_T_origin[:, 0],
                                         __pb(gt_boxes_origin_corners)))
                gt_boxesR_theta = utils_geom.transform_corners_to_boxes(
                    gt_boxesR_corners)
                gt_boxesR_end = nlu.get_ends_of_corner(gt_boxesR_corners)

            else:
                tree_seq_filename = feed['tree_seq_filename']
                tree_filenames = [
                    join(hyp.root_dataset, i) for i in tree_seq_filename
                    if i != "invalid_tree"
                ]
                invalid_tree_filenames = [
                    join(hyp.root_dataset, i) for i in tree_seq_filename
                    if i == "invalid_tree"
                ]
                num_empty = len(invalid_tree_filenames)
                trees = [pickle.load(open(i, "rb")) for i in tree_filenames]

                len_valid = len(trees)
                if len_valid > 0:
                    gt_boxesR, scores, classes = nlu.trees_rearrange(trees)

                if num_empty > 0:
                    gt_boxesR = np.concatenate([
                        gt_boxesR, empty_gt_boxesR
                    ]) if len_valid > 0 else empty_gt_boxesR
                    scores = np.concatenate([
                        scores, empty_scores
                    ]) if len_valid > 0 else empty_scores
                    classes = np.concatenate([
                        classes, empty_classes
                    ]) if len_valid > 0 else empty_classes

                gt_boxesR = torch.from_numpy(
                    gt_boxesR).cuda().float()  # torch.Size([2, 3, 6])
                gt_boxesR_end = torch.reshape(gt_boxesR, [hyp.B, hyp.N, 2, 3])
                gt_boxesR_theta = nlu.get_alignedboxes2thetaformat(
                    gt_boxesR_end)  #torch.Size([2, 3, 9])
                gt_boxesR_corners = utils_geom.transform_boxes_to_corners(
                    gt_boxesR_theta)

            class_names_ex_1 = "_".join(classes[0])
            summ_writer.summ_text('eval_boxes/class_names', class_names_ex_1)

            gt_boxesRMem_corners = __ub(
                utils_vox.Ref2Mem(__pb(gt_boxesR_corners), Z2, Y2, X2))
            gt_boxesRMem_end = nlu.get_ends_of_corner(gt_boxesRMem_corners)

            gt_boxesRMem_theta = utils_geom.transform_corners_to_boxes(
                gt_boxesRMem_corners)
            gt_boxesRUnp_corners = __ub(
                utils_vox.Ref2Mem(__pb(gt_boxesR_corners), Z, Y, X))
            gt_boxesRUnp_end = nlu.get_ends_of_corner(gt_boxesRUnp_corners)

            gt_boxesX0_corners = __ub(
                utils_geom.apply_4x4(camX0_T_camRs, __pb(gt_boxesR_corners)))
            gt_boxesX0Mem_corners = __ub(
                utils_vox.Ref2Mem(__pb(gt_boxesX0_corners), Z2, Y2, X2))

            gt_boxesX0Mem_theta = utils_geom.transform_corners_to_boxes(
                gt_boxesX0Mem_corners)

            gt_boxesX0Mem_end = nlu.get_ends_of_corner(gt_boxesX0Mem_corners)
            gt_boxesX0_end = nlu.get_ends_of_corner(gt_boxesX0_corners)

            gt_cornersX0_pix = __ub(
                utils_geom.apply_pix_T_cam(pix_T_cams[:, 0],
                                           __pb(gt_boxesX0_corners)))

            rgb_camX0 = rgb_camXs[:, 0]
            rgb_camX1 = rgb_camXs[:, 1]

            summ_writer.summ_box_by_corners('eval_boxes/gt_boxescamX0',
                                            rgb_camX0, gt_boxesX0_corners,
                                            torch.from_numpy(scores), tids,
                                            pix_T_cams[:, 0])
            unps_vis = utils_improc.get_unps_vis(unpX0s_half, occX0s_half)
            unp_vis = torch.mean(unps_vis, dim=1)
            unps_visRs = utils_improc.get_unps_vis(unpRs_half, occRs_half)
            unp_visRs = torch.mean(unps_visRs, dim=1)
            unps_visRs_full = utils_improc.get_unps_vis(unpRs, occRs)
            unp_visRs_full = torch.mean(unps_visRs_full, dim=1)
            summ_writer.summ_box_mem_on_unp('eval_boxes/gt_boxesR_mem',
                                            unp_visRs, gt_boxesRMem_end,
                                            scores, tids)

            unpX0s_half = torch.mean(unpX0s_half, dim=1)
            unpX0s_half = nlu.zero_out(unpX0s_half, gt_boxesX0Mem_end, scores)

            occX0s_half = torch.mean(occX0s_half, dim=1)
            occX0s_half = nlu.zero_out(occX0s_half, gt_boxesX0Mem_end, scores)

            summ_writer.summ_unp('3D_inputs/unpX0s', unpX0s_half, occX0s_half)

        if hyp.do_feat:
            featXs_input = torch.cat([occXs, occXs * unpXs], dim=2)
            featXs_input_ = __p(featXs_input)

            freeXs_ = utils_vox.get_freespace(__p(xyz_camXs), __p(occXs_half))
            freeXs = __u(freeXs_)
            visXs = torch.clamp(occXs_half + freeXs, 0.0, 1.0)
            mask_ = None

            if (type(mask_) != type(None)):
                assert (list(mask_.shape)[2:5] == list(
                    featXs_input_.shape)[2:5])

            featXs_, feat_loss = self.featnet(featXs_input_,
                                              summ_writer,
                                              mask=__p(occXs))  #mask_)
            total_loss += feat_loss

            validXs = torch.ones_like(visXs)
            _validX00 = validXs[:, 0:1]
            _validX01 = utils_vox.apply_4x4s_to_voxs(camX0_T_camXs[:, 1:],
                                                     validXs[:, 1:])
            validX0s = torch.cat([_validX00, _validX01], dim=1)
            validRs = utils_vox.apply_4x4s_to_voxs(camRs_T_camXs, validXs)
            visRs = utils_vox.apply_4x4s_to_voxs(camRs_T_camXs, visXs)

            featXs = __u(featXs_)
            _featX00 = featXs[:, 0:1]
            _featX01 = utils_vox.apply_4x4s_to_voxs(camX0_T_camXs[:, 1:],
                                                    featXs[:, 1:])
            featX0s = torch.cat([_featX00, _featX01], dim=1)

            emb3D_e = torch.mean(featX0s[:, 1:], dim=1)
            vis3D_e_R = torch.max(visRs[:, 1:], dim=1)[0]
            emb3D_g = featX0s[:, 0]
            vis3D_g_R = visRs[:, 0]
            validR_combo = torch.min(validRs, dim=1).values

            summ_writer.summ_feats('3D_feats/featXs_input',
                                   torch.unbind(featXs_input, dim=1),
                                   pca=True)
            summ_writer.summ_feats('3D_feats/featXs_output',
                                   torch.unbind(featXs, dim=1),
                                   valids=torch.unbind(validXs, dim=1),
                                   pca=True)
            summ_writer.summ_feats('3D_feats/featX0s_output',
                                   torch.unbind(featX0s, dim=1),
                                   valids=torch.unbind(
                                       torch.ones_like(validRs), dim=1),
                                   pca=True)
            summ_writer.summ_feats('3D_feats/validRs',
                                   torch.unbind(validRs, dim=1),
                                   pca=False)
            summ_writer.summ_feat('3D_feats/vis3D_e_R', vis3D_e_R, pca=False)
            summ_writer.summ_feat('3D_feats/vis3D_g_R', vis3D_g_R, pca=False)

        if hyp.do_munit:
            object_classes, filenames = nlu.create_object_classes(
                classes, [tree_seq_filename, tree_seq_filename], scores)
            if hyp.do_munit_fewshot:
                emb3D_e_R = utils_vox.apply_4x4_to_vox(camR_T_camX0, emb3D_e)
                emb3D_g_R = utils_vox.apply_4x4_to_vox(camR_T_camX0, emb3D_g)
                emb3D_R = emb3D_e_R
                emb3D_e_R_object, emb3D_g_R_object, validR_combo_object = nlu.create_object_tensors(
                    [emb3D_e_R, emb3D_g_R], [validR_combo], gt_boxesRMem_end,
                    scores, [BOX_SIZE, BOX_SIZE, BOX_SIZE])
                emb3D_R_object = (emb3D_e_R_object + emb3D_g_R_object) / 2
                content, style = self.munitnet.net.gen_a.encode(emb3D_R_object)
                objects_taken, _ = self.munitnet.net.gen_a.decode(
                    content, style)
                styles = style
                contents = content
            elif hyp.do_3d_style_munit:
                emb3D_e_R = utils_vox.apply_4x4_to_vox(camR_T_camX0, emb3D_e)
                emb3D_g_R = utils_vox.apply_4x4_to_vox(camR_T_camX0, emb3D_g)
                emb3D_R = emb3D_e_R
                # st()
                emb3D_e_R_object, emb3D_g_R_object, validR_combo_object = nlu.create_object_tensors(
                    [emb3D_e_R, emb3D_g_R], [validR_combo], gt_boxesRMem_end,
                    scores, [BOX_SIZE, BOX_SIZE, BOX_SIZE])
                emb3D_R_object = (emb3D_e_R_object + emb3D_g_R_object) / 2

                camX1_T_R = camXs_T_camRs[:, 1]
                camX0_T_R = camXs_T_camRs[:, 0]
                assert hyp.B == 2
                assert emb3D_e_R_object.shape[0] == 2
                munit_loss, sudo_input_0, sudo_input_1, recon_input_0, recon_input_1, sudo_input_0_cycle, sudo_input_1_cycle, styles, contents, adin = self.munitnet(
                    emb3D_R_object[0:1], emb3D_R_object[1:2])

                if hyp.store_content_style_range:
                    if self.max_content == None:
                        self.max_content = torch.zeros_like(
                            contents[0][0]).cuda() - 100000000
                    if self.min_content == None:
                        self.min_content = torch.zeros_like(
                            contents[0][0]).cuda() + 100000000
                    if self.max_style == None:
                        self.max_style = torch.zeros_like(
                            styles[0][0]).cuda() - 100000000
                    if self.min_style == None:
                        self.min_style = torch.zeros_like(
                            styles[0][0]).cuda() + 100000000
                    self.max_content = torch.max(
                        torch.max(self.max_content, contents[0][0]),
                        contents[1][0])
                    self.min_content = torch.min(
                        torch.min(self.min_content, contents[0][0]),
                        contents[1][0])
                    self.max_style = torch.max(
                        torch.max(self.max_style, styles[0][0]), styles[1][0])
                    self.min_style = torch.min(
                        torch.min(self.min_style, styles[0][0]), styles[1][0])

                    data_to_save = {
                        'max_content': self.max_content.cpu().numpy(),
                        'min_content': self.min_content.cpu().numpy(),
                        'max_style': self.max_style.cpu().numpy(),
                        'min_style': self.min_style.cpu().numpy()
                    }
                    with open('content_style_range.p', 'wb') as f:
                        pickle.dump(data_to_save, f)
                elif hyp.is_contrastive_examples:
                    if hyp.normalize_contrast:
                        content0 = (contents[0] - self.min_content) / (
                            self.max_content - self.min_content + 1e-5)
                        content1 = (contents[1] - self.min_content) / (
                            self.max_content - self.min_content + 1e-5)
                        style0 = (styles[0] - self.min_style) / (
                            self.max_style - self.min_style + 1e-5)
                        style1 = (styles[1] - self.min_style) / (
                            self.max_style - self.min_style + 1e-5)
                    else:
                        content0 = contents[0]
                        content1 = contents[1]
                        style0 = styles[0]
                        style1 = styles[1]

                    # euclid_dist_content = torch.sum(torch.sqrt((content0 - content1)**2))/torch.prod(torch.tensor(content0.shape))
                    # euclid_dist_style = torch.sum(torch.sqrt((style0-style1)**2))/torch.prod(torch.tensor(style0.shape))
                    euclid_dist_content = (content0 - content1).norm(2) / (
                        content0.numel())
                    euclid_dist_style = (style0 -
                                         style1).norm(2) / (style0.numel())

                    content_0_pooled = torch.mean(
                        content0.reshape(list(content0.shape[:2]) + [-1]),
                        dim=-1)
                    content_1_pooled = torch.mean(
                        content1.reshape(list(content1.shape[:2]) + [-1]),
                        dim=-1)

                    euclid_dist_content_pooled = (content_0_pooled -
                                                  content_1_pooled).norm(2) / (
                                                      content_0_pooled.numel())

                    content_0_normalized = content0 / content0.norm()
                    content_1_normalized = content1 / content1.norm()

                    style_0_normalized = style0 / style0.norm()
                    style_1_normalized = style1 / style1.norm()

                    content_0_pooled_normalized = content_0_pooled / content_0_pooled.norm(
                    )
                    content_1_pooled_normalized = content_1_pooled / content_1_pooled.norm(
                    )

                    cosine_dist_content = torch.sum(content_0_normalized *
                                                    content_1_normalized)
                    cosine_dist_style = torch.sum(style_0_normalized *
                                                  style_1_normalized)
                    cosine_dist_content_pooled = torch.sum(
                        content_0_pooled_normalized *
                        content_1_pooled_normalized)

                    print("euclid dist [content, pooled-content, style]: ",
                          euclid_dist_content, euclid_dist_content_pooled,
                          euclid_dist_style)
                    print("cosine sim [content, pooled-content, style]: ",
                          cosine_dist_content, cosine_dist_content_pooled,
                          cosine_dist_style)

            if hyp.run_few_shot_on_munit:
                if (global_step % 300) == 1 or (global_step % 300) == 0:
                    wrong = False
                    try:
                        precision_style = float(self.tp_style) / self.all_style
                        precision_content = float(
                            self.tp_content) / self.all_content
                    except ZeroDivisionError:
                        wrong = True

                    if not wrong:
                        summ_writer.summ_scalar(
                            'precision/unsupervised_precision_style',
                            precision_style)
                        summ_writer.summ_scalar(
                            'precision/unsupervised_precision_content',
                            precision_content)
                        # st()
                    self.embed_list_style = defaultdict(lambda: [])
                    self.embed_list_content = defaultdict(lambda: [])
                    self.tp_style = 0
                    self.all_style = 0
                    self.tp_content = 0
                    self.all_content = 0
                    self.check = False
                elif not self.check and not nlu.check_fill_dict(
                        self.embed_list_content, self.embed_list_style):
                    print("Filling \n")
                    for index, class_val in enumerate(object_classes):

                        if hyp.dataset_name == "clevr_vqa":
                            class_val_content, class_val_style = class_val.split(
                                "/")
                        else:
                            class_val_content, class_val_style = [
                                class_val.split("/")[0],
                                class_val.split("/")[0]
                            ]

                        print(len(self.embed_list_style.keys()), "style class",
                              len(self.embed_list_content), "content class",
                              self.embed_list_content.keys())
                        if len(self.embed_list_style[class_val_style]
                               ) < hyp.few_shot_nums:
                            self.embed_list_style[class_val_style].append(
                                styles[index].squeeze())
                        if len(self.embed_list_content[class_val_content]
                               ) < hyp.few_shot_nums:
                            if hyp.avg_3d:
                                content_val = contents[index]
                                content_val = torch.mean(content_val.reshape(
                                    [content_val.shape[1], -1]),
                                                         dim=-1)
                                # st()
                                self.embed_list_content[
                                    class_val_content].append(content_val)
                            else:
                                self.embed_list_content[
                                    class_val_content].append(
                                        contents[index].reshape([-1]))
                else:
                    self.check = True
                    try:
                        print(float(self.tp_content) / self.all_content)
                        print(float(self.tp_style) / self.all_style)
                    except Exception as e:
                        pass
                    average = True
                    if average:
                        for key, val in self.embed_list_style.items():
                            if isinstance(val, type([])):
                                self.embed_list_style[key] = torch.mean(
                                    torch.stack(val, dim=0), dim=0)

                        for key, val in self.embed_list_content.items():
                            if isinstance(val, type([])):
                                self.embed_list_content[key] = torch.mean(
                                    torch.stack(val, dim=0), dim=0)
                    else:
                        for key, val in self.embed_list_style.items():
                            if isinstance(val, type([])):
                                self.embed_list_style[key] = torch.stack(val,
                                                                         dim=0)

                        for key, val in self.embed_list_content.items():
                            if isinstance(val, type([])):
                                self.embed_list_content[key] = torch.stack(
                                    val, dim=0)
                    for index, class_val in enumerate(object_classes):
                        class_val = class_val
                        if hyp.dataset_name == "clevr_vqa":
                            class_val_content, class_val_style = class_val.split(
                                "/")
                        else:
                            class_val_content, class_val_style = [
                                class_val.split("/")[0],
                                class_val.split("/")[0]
                            ]

                        style_val = styles[index].squeeze().unsqueeze(0)
                        if not average:
                            embed_list_val_style = torch.cat(list(
                                self.embed_list_style.values()),
                                                             dim=0)
                            embed_list_key_style = list(
                                np.repeat(
                                    np.expand_dims(
                                        list(self.embed_list_style.keys()), 1),
                                    hyp.few_shot_nums, 1).reshape([-1]))
                        else:
                            embed_list_val_style = torch.stack(list(
                                self.embed_list_style.values()),
                                                               dim=0)
                            embed_list_key_style = list(
                                self.embed_list_style.keys())
                        embed_list_val_style = utils_basic.l2_normalize(
                            embed_list_val_style, dim=1).permute(1, 0)
                        style_val = utils_basic.l2_normalize(style_val, dim=1)
                        scores_styles = torch.matmul(style_val,
                                                     embed_list_val_style)
                        index_key = torch.argmax(scores_styles,
                                                 dim=1).squeeze()
                        selected_class_style = embed_list_key_style[index_key]
                        self.styles_prediction[class_val_style].append(
                            selected_class_style)
                        if class_val_style == selected_class_style:
                            self.tp_style += 1
                        self.all_style += 1

                        if hyp.avg_3d:
                            content_val = contents[index]
                            content_val = torch.mean(content_val.reshape(
                                [content_val.shape[1], -1]),
                                                     dim=-1).unsqueeze(0)
                        else:
                            content_val = contents[index].reshape(
                                [-1]).unsqueeze(0)
                        if not average:
                            embed_list_val_content = torch.cat(list(
                                self.embed_list_content.values()),
                                                               dim=0)
                            embed_list_key_content = list(
                                np.repeat(
                                    np.expand_dims(
                                        list(self.embed_list_content.keys()),
                                        1), hyp.few_shot_nums,
                                    1).reshape([-1]))
                        else:
                            embed_list_val_content = torch.stack(list(
                                self.embed_list_content.values()),
                                                                 dim=0)
                            embed_list_key_content = list(
                                self.embed_list_content.keys())
                        embed_list_val_content = utils_basic.l2_normalize(
                            embed_list_val_content, dim=1).permute(1, 0)
                        content_val = utils_basic.l2_normalize(content_val,
                                                               dim=1)
                        scores_content = torch.matmul(content_val,
                                                      embed_list_val_content)
                        index_key = torch.argmax(scores_content,
                                                 dim=1).squeeze()
                        selected_class_content = embed_list_key_content[
                            index_key]
                        self.content_prediction[class_val_content].append(
                            selected_class_content)
                        if class_val_content == selected_class_content:
                            self.tp_content += 1

                        self.all_content += 1
            # st()
            munit_loss = hyp.munit_loss_weight * munit_loss

            recon_input_obj = torch.cat([recon_input_0, recon_input_1], dim=0)
            recon_emb3D_R = nlu.update_scene_with_objects(
                emb3D_R, recon_input_obj, gt_boxesRMem_end, scores)

            sudo_input_obj = torch.cat([sudo_input_0, sudo_input_1], dim=0)
            styled_emb3D_R = nlu.update_scene_with_objects(
                emb3D_R, sudo_input_obj, gt_boxesRMem_end, scores)

            styled_emb3D_e_X1 = utils_vox.apply_4x4_to_vox(
                camX1_T_R, styled_emb3D_R)
            styled_emb3D_e_X0 = utils_vox.apply_4x4_to_vox(
                camX0_T_R, styled_emb3D_R)

            emb3D_e_X1 = utils_vox.apply_4x4_to_vox(camX1_T_R, recon_emb3D_R)
            emb3D_e_X0 = utils_vox.apply_4x4_to_vox(camX0_T_R, recon_emb3D_R)

            emb3D_e_X1_og = utils_vox.apply_4x4_to_vox(camX1_T_R, emb3D_R)
            emb3D_e_X0_og = utils_vox.apply_4x4_to_vox(camX0_T_R, emb3D_R)

            emb3D_R_aug_diff = torch.abs(emb3D_R - recon_emb3D_R)

            summ_writer.summ_feat(f'aug_feat/og', emb3D_R)
            summ_writer.summ_feat(f'aug_feat/og_gen', recon_emb3D_R)
            summ_writer.summ_feat(f'aug_feat/og_aug_diff', emb3D_R_aug_diff)

            if hyp.cycle_style_view_loss:
                sudo_input_obj_cycle = torch.cat(
                    [sudo_input_0_cycle, sudo_input_1_cycle], dim=0)
                styled_emb3D_R_cycle = nlu.update_scene_with_objects(
                    emb3D_R, sudo_input_obj_cycle, gt_boxesRMem_end, scores)

                styled_emb3D_e_X0_cycle = utils_vox.apply_4x4_to_vox(
                    camX0_T_R, styled_emb3D_R_cycle)
                styled_emb3D_e_X1_cycle = utils_vox.apply_4x4_to_vox(
                    camX1_T_R, styled_emb3D_R_cycle)
            summ_writer.summ_scalar('munit_loss', munit_loss.cpu().item())
            total_loss += munit_loss

        if hyp.do_occ and hyp.occ_do_cheap:
            occX0_sup, freeX0_sup, _, freeXs = utils_vox.prep_occs_supervision(
                camX0_T_camXs, xyz_camXs, Z2, Y2, X2, agg=True)

            summ_writer.summ_occ('occ_sup/occ_sup', occX0_sup)
            summ_writer.summ_occ('occ_sup/free_sup', freeX0_sup)
            summ_writer.summ_occs('occ_sup/freeXs_sup',
                                  torch.unbind(freeXs, dim=1))
            summ_writer.summ_occs('occ_sup/occXs_sup',
                                  torch.unbind(occXs_half, dim=1))

            occ_loss, occX0s_pred_ = self.occnet(
                torch.mean(featX0s[:, 1:], dim=1), occX0_sup, freeX0_sup,
                torch.max(validX0s[:, 1:], dim=1)[0], summ_writer)
            occX0s_pred = __u(occX0s_pred_)
            total_loss += occ_loss

        if hyp.do_view:
            assert (hyp.do_feat)
            PH, PW = hyp.PH, hyp.PW
            sy = float(PH) / float(hyp.H)
            sx = float(PW) / float(hyp.W)
            assert (sx == 0.5)  # else we need a fancier downsampler
            assert (sy == 0.5)
            projpix_T_cams = __u(
                utils_geom.scale_intrinsics(__p(pix_T_cams), sx, sy))
            # st()

            if hyp.do_munit:
                feat_projX00 = utils_vox.apply_pixX_T_memR_to_voxR(
                    projpix_T_cams[:, 0],
                    camX0_T_camXs[:, 1],
                    emb3D_e_X1,  # use feat1 to predict rgb0
                    hyp.view_depth,
                    PH,
                    PW)

                feat_projX00_og = utils_vox.apply_pixX_T_memR_to_voxR(
                    projpix_T_cams[:, 0],
                    camX0_T_camXs[:, 1],
                    emb3D_e_X1_og,  # use feat1 to predict rgb0
                    hyp.view_depth,
                    PH,
                    PW)

                # only for checking the style
                styled_feat_projX00 = utils_vox.apply_pixX_T_memR_to_voxR(
                    projpix_T_cams[:, 0],
                    camX0_T_camXs[:, 1],
                    styled_emb3D_e_X1,  # use feat1 to predict rgb0
                    hyp.view_depth,
                    PH,
                    PW)

                if hyp.cycle_style_view_loss:
                    styled_feat_projX00_cycle = utils_vox.apply_pixX_T_memR_to_voxR(
                        projpix_T_cams[:, 0],
                        camX0_T_camXs[:, 1],
                        styled_emb3D_e_X1_cycle,  # use feat1 to predict rgb0
                        hyp.view_depth,
                        PH,
                        PW)

            else:
                feat_projX00 = utils_vox.apply_pixX_T_memR_to_voxR(
                    projpix_T_cams[:, 0],
                    camX0_T_camXs[:, 1],
                    featXs[:, 1],  # use feat1 to predict rgb0
                    hyp.view_depth,
                    PH,
                    PW)
            rgb_X00 = utils_basic.downsample(rgb_camXs[:, 0], 2)
            rgb_X01 = utils_basic.downsample(rgb_camXs[:, 1], 2)
            valid_X00 = utils_basic.downsample(valid_camXs[:, 0], 2)

            view_loss, rgb_e, emb2D_e = self.viewnet(feat_projX00, rgb_X00,
                                                     valid_X00, summ_writer,
                                                     "rgb")

            if hyp.do_munit:
                _, rgb_e, emb2D_e = self.viewnet(feat_projX00_og, rgb_X00,
                                                 valid_X00, summ_writer,
                                                 "rgb_og")
            if hyp.do_munit:
                styled_view_loss, styled_rgb_e, styled_emb2D_e = self.viewnet(
                    styled_feat_projX00, rgb_X00, valid_X00, summ_writer,
                    "recon_style")
                if hyp.cycle_style_view_loss:
                    styled_view_loss_cycle, styled_rgb_e_cycle, styled_emb2D_e_cycle = self.viewnet(
                        styled_feat_projX00_cycle, rgb_X00, valid_X00,
                        summ_writer, "recon_style_cycle")

                rgb_input_1 = torch.cat(
                    [rgb_X01[1], rgb_X01[0], styled_rgb_e[0]], dim=2)
                rgb_input_2 = torch.cat(
                    [rgb_X01[0], rgb_X01[1], styled_rgb_e[1]], dim=2)
                complete_vis = torch.cat([rgb_input_1, rgb_input_2], dim=1)
                summ_writer.summ_rgb('munit/munit_recons_vis',
                                     complete_vis.unsqueeze(0))

            if not hyp.do_munit:
                total_loss += view_loss
            else:
                if hyp.basic_view_loss:
                    total_loss += view_loss
                if hyp.style_view_loss:
                    total_loss += styled_view_loss
                if hyp.cycle_style_view_loss:
                    total_loss += styled_view_loss_cycle

        summ_writer.summ_scalar('loss', total_loss.cpu().item())

        if hyp.save_embed_tsne:
            for index, class_val in enumerate(object_classes):
                class_val_content, class_val_style = class_val.split("/")
                style_val = styles[index].squeeze().unsqueeze(0)
                self.cluster_pool.update(style_val, [class_val_style])
                print(self.cluster_pool.num)

            if self.cluster_pool.is_full():
                embeds, classes = self.cluster_pool.fetch()
                with open("offline_cluster" + '/%st.txt' % 'classes',
                          'w') as f:
                    for index, embed in enumerate(classes):
                        class_val = classes[index]
                        f.write("%s\n" % class_val)
                f.close()
                with open("offline_cluster" + '/%st.txt' % 'embeddings',
                          'w') as f:
                    for index, embed in enumerate(embeds):
                        # embed = utils_basic.l2_normalize(embed,dim=0)
                        print("writing {} embed".format(index))
                        embed_l_s = [str(i) for i in embed.tolist()]
                        embed_str = '\t'.join(embed_l_s)
                        f.write("%s\n" % embed_str)
                f.close()
                st()

        return total_loss, results
def get_synth_flow_v2(xyz_cam0,
                      occ0,
                      unp0,
                      summ_writer,
                      sometimes_zero=False,
                      do_vis=False):
    # this version re-voxlizes occ1, rather than warp
    B, C, Z, Y, X = list(unp0.shape)
    assert (C == 3)

    __p = lambda x: utils_basic.pack_seqdim(x, B)
    __u = lambda x: utils_basic.unpack_seqdim(x, B)

    # we do not sample any rotations here, to keep the distribution purely
    # uniform across all translations
    # (rotation ruins this, since the pivot point is at the camera)
    cam1_T_cam0 = [
        utils_geom.get_random_rt(B, r_amount=0.0,
                                 t_amount=3.0),  # large motion
        utils_geom.get_random_rt(
            B,
            r_amount=0.0,
            t_amount=0.1,  # small motion
            sometimes_zero=sometimes_zero)
    ]
    cam1_T_cam0 = random.sample(cam1_T_cam0, k=1)[0]

    xyz_cam1 = utils_geom.apply_4x4(cam1_T_cam0, xyz_cam0)
    occ1 = utils_vox.voxelize_xyz(xyz_cam1, Z, Y, X)
    unp1 = utils_vox.apply_4x4_to_vox(cam1_T_cam0, unp0)
    occs = [occ0, occ1]
    unps = [unp0, unp1]

    if do_vis:
        summ_writer.summ_occs('synth/occs', occs)
        summ_writer.summ_unps('synth/unps', unps, occs)

    mem_T_cam = utils_vox.get_mem_T_ref(B, Z, Y, X)
    cam_T_mem = utils_vox.get_ref_T_mem(B, Z, Y, X)
    mem1_T_mem0 = utils_basic.matmul3(mem_T_cam, cam1_T_cam0, cam_T_mem)
    xyz_mem0 = utils_basic.gridcloud3D(B, Z, Y, X)
    xyz_mem1 = utils_geom.apply_4x4(mem1_T_mem0, xyz_mem0)
    xyz_mem0 = xyz_mem0.reshape(B, Z, Y, X, 3)
    xyz_mem1 = xyz_mem1.reshape(B, Z, Y, X, 3)
    flow = xyz_mem1 - xyz_mem0
    # this is B x Z x Y x X x 3
    flow = flow.permute(0, 4, 1, 2, 3)
    # this is B x 3 x Z x Y x X
    if do_vis:
        summ_writer.summ_3D_flow('synth/flow', flow, clip=2.0)

    if do_vis:
        occ0_e = utils_samp.backwarp_using_3D_flow(occ1,
                                                   flow,
                                                   binary_feat=True)
        unp0_e = utils_samp.backwarp_using_3D_flow(unp1, flow)
        summ_writer.summ_occs('synth/occs_stab', [occ0, occ0_e])
        summ_writer.summ_unps('synth/unps_stab', [unp0, unp0_e],
                              [occ0, occ0_e])

    occs = torch.stack(occs, dim=1)
    unps = torch.stack(unps, dim=1)

    return occs, unps, flow, cam1_T_cam0
Exemplo n.º 9
0
    def forward(self, feed):
        results = dict()
        summ_writer = utils_improc.Summ_writer(writer=feed['writer'],
                                               global_step=feed['global_step'],
                                               set_name=feed['set_name'],
                                               fps=8)
        writer = feed['writer']
        global_step = feed['global_step']

        total_loss = torch.tensor(0.0).cuda()

        __p = lambda x: pack_seqdim(x, B)
        __u = lambda x: unpack_seqdim(x, B)

        B, H, W, V, S, N = hyp.B, hyp.H, hyp.W, hyp.V, hyp.S, hyp.N
        PH, PW = hyp.PH, hyp.PW
        K = hyp.K
        Z, Y, X = hyp.Z, hyp.Y, hyp.X
        Z2, Y2, X2 = int(Z / 2), int(Y / 2), int(X / 2)
        D = 9

        rgb_camRs = feed["rgb_camRs"]
        rgb_camXs = feed["rgb_camXs"]
        pix_T_cams = feed["pix_T_cams"]
        cam_T_velos = feed["cam_T_velos"]

        origin_T_camRs = feed["origin_T_camRs"]
        origin_T_camRs_ = __p(origin_T_camRs)
        origin_T_camXs = feed["origin_T_camXs"]
        origin_T_camXs_ = __p(origin_T_camXs)

        camX0_T_camXs = utils_geom.get_camM_T_camXs(origin_T_camXs, ind=0)
        camX0_T_camXs_ = __p(camX0_T_camXs)
        camRs_T_camXs_ = torch.matmul(utils_geom.safe_inverse(origin_T_camRs_),
                                      origin_T_camXs_)
        camXs_T_camRs_ = utils_geom.safe_inverse(camRs_T_camXs_)
        camRs_T_camXs = __u(camRs_T_camXs_)
        camXs_T_camRs = __u(camXs_T_camRs_)

        xyz_veloXs = feed["xyz_veloXs"]
        xyz_camXs = __u(utils_geom.apply_4x4(__p(cam_T_velos),
                                             __p(xyz_veloXs)))
        xyz_camRs = __u(
            utils_geom.apply_4x4(__p(camRs_T_camXs), __p(xyz_camXs)))
        xyz_camX0s = __u(
            utils_geom.apply_4x4(__p(camX0_T_camXs), __p(xyz_camXs)))

        occXs = __u(utils_vox.voxelize_xyz(__p(xyz_camXs), Z, Y, X))
        occXs_half = __u(utils_vox.voxelize_xyz(__p(xyz_camXs), Z2, Y2, X2))
        occX0s_half = __u(utils_vox.voxelize_xyz(__p(xyz_camX0s), Z2, Y2, X2))

        unpXs = __u(
            utils_vox.unproject_rgb_to_mem(__p(rgb_camXs), Z, Y, X,
                                           __p(pix_T_cams)))

        ## projected depth, and inbound mask
        depth_camXs_, valid_camXs_ = utils_geom.create_depth_image(
            __p(pix_T_cams), __p(xyz_camXs), H, W)
        dense_xyz_camXs_ = utils_geom.depth2pointcloud(depth_camXs_,
                                                       __p(pix_T_cams))
        dense_xyz_camX0s_ = utils_geom.apply_4x4(__p(camX0_T_camXs),
                                                 dense_xyz_camXs_)
        inbound_camXs_ = utils_vox.get_inbounds(dense_xyz_camX0s_, Z, Y,
                                                X).float()
        inbound_camXs_ = torch.reshape(inbound_camXs_, [B * S, 1, H, W])

        depth_camXs = __u(depth_camXs_)
        valid_camXs = __u(valid_camXs_) * __u(inbound_camXs_)

        #####################
        ## visualize what we got
        #####################
        summ_writer.summ_oneds('2D_inputs/depth_camXs',
                               torch.unbind(depth_camXs, dim=1))
        summ_writer.summ_oneds('2D_inputs/valid_camXs',
                               torch.unbind(valid_camXs, dim=1))
        summ_writer.summ_oneds('2D_inputs/valid_camXs',
                               torch.unbind(valid_camXs, dim=1))
        summ_writer.summ_rgbs('2D_inputs/rgb_camRs',
                              torch.unbind(rgb_camRs, dim=1))
        summ_writer.summ_rgbs('2D_inputs/rgb_camXs',
                              torch.unbind(rgb_camXs, dim=1))
        summ_writer.summ_occs('3D_inputs/occXs', torch.unbind(occXs, dim=1))
        summ_writer.summ_unps('3D_inputs/unpXs', torch.unbind(unpXs, dim=1),
                              torch.unbind(occXs, dim=1))
        if summ_writer.save_this:
            unpRs = __u(
                utils_vox.unproject_rgb_to_mem(
                    __p(rgb_camXs), Z, Y, X,
                    matmul2(__p(pix_T_cams),
                            utils_geom.safe_inverse(__p(camRs_T_camXs)))))
            occRs = __u(utils_vox.voxelize_xyz(__p(xyz_camRs), Z, Y, X))
            summ_writer.summ_occs('3D_inputs/occRs', torch.unbind(occRs,
                                                                  dim=1))
            summ_writer.summ_unps('3D_inputs/unpRs', torch.unbind(unpRs,
                                                                  dim=1),
                                  torch.unbind(occRs, dim=1))

        #####################
        ## run the nets
        #####################

        mask_ = None
        if hyp.do_occ and (not hyp.occ_do_cheap):
            '''
            occRs_sup, freeRs_sup, freeXs = utils_vox.prep_occs_supervision(xyz_camXs,
                                                                            occRs_half,
                                                                            occXs_half,
                                                                            camRs_T_camXs,
                                                                            agg=True)
            
            featRs_input = torch.cat([occRs, occRs*unpRs], dim=2)
            featRs_input_ = __p(featRs_input)
            occRs_sup_ = __p(occRs_sup)
            freeRs_sup_ = __p(freeRs_sup)
            occ_loss, occRs_pred_ = self.occnet(featRs_input_,
                                                occRs_sup_,
                                                freeRs_sup_,
                                                summ_writer
            )
            occRs_pred = __u(occRs_pred_)
            total_loss += occ_loss
            
            mask_ = F.upsample(occRs_pred_, scale_factor=2)
            '''
            occXs_ = __p(occXs)
            mask_ = occXs_

        if hyp.do_feat:
            # occXs is B x S x 1 x H x W x D
            # unpXs is B x S x 3 x H x W x D
            featXs_input = torch.cat([occXs, occXs * unpXs], dim=2)
            featXs_input_ = __p(featXs_input)

            # it is useful to keep track of what was visible from each viewpoint
            freeXs_ = utils_vox.get_freespace(__p(xyz_camXs), __p(occXs_half))
            freeXs = __u(freeXs_)
            visXs = torch.clamp(occXs_half + freeXs, 0.0, 1.0)

            if (type(mask_) != type(None)):
                assert (list(mask_.shape)[2:5] == list(
                    featXs_input_.shape)[2:5])
            featXs_, validXs_, feat_loss = self.featnet(
                featXs_input_, summ_writer, mask=__p(occXs))  #mask_)
            total_loss += feat_loss

            validXs = __u(validXs_)
            _validX00 = validXs[:, 0:1]
            _validX01 = utils_vox.apply_4x4_to_voxs(camX0_T_camXs[:, 1:],
                                                    validXs[:, 1:])
            validX0s = torch.cat([_validX00, _validX01], dim=1)

            _visX00 = visXs[:, 0:1]
            _visX01 = utils_vox.apply_4x4_to_voxs(camX0_T_camXs[:, 1:],
                                                  visXs[:, 1:])
            visX0s = torch.cat([_visX00, _visX01], dim=1)

            featXs = __u(featXs_)
            _featX00 = featXs[:, 0:1]
            _featX01 = utils_vox.apply_4x4_to_voxs(camX0_T_camXs[:, 1:],
                                                   featXs[:, 1:])
            featX0s = torch.cat([_featX00, _featX01], dim=1)

            emb3D_e = torch.mean(featX0s[:, 1:], dim=1)  # context
            emb3D_g = featX0s[:, 0]  # obs
            vis3D_e = torch.max(validX0s[:, 1:], dim=1)[0] * torch.max(
                visX0s[:, 1:], dim=1)[0]
            vis3D_g = validX0s[:, 0] * visX0s[:, 0]  # obs

            if hyp.do_eval_recall:
                results['emb3D_e'] = emb3D_e
                results['emb3D_g'] = emb3D_g

            summ_writer.summ_feats('3D_feats/featXs_input',
                                   torch.unbind(featXs_input, dim=1),
                                   pca=True)
            summ_writer.summ_feats('3D_feats/featXs_output',
                                   torch.unbind(featXs, dim=1),
                                   pca=True)
            summ_writer.summ_feats('3D_feats/featX0s_output',
                                   torch.unbind(featX0s, dim=1),
                                   pca=True)
            summ_writer.summ_feats('3D_feats/validX0s',
                                   torch.unbind(validX0s, dim=1),
                                   pca=False)
            summ_writer.summ_feat('3D_feats/vis3D_e', vis3D_e, pca=False)
            summ_writer.summ_feat('3D_feats/vis3D_g', vis3D_g, pca=False)

        if hyp.do_occ and hyp.occ_do_cheap:
            occX0_sup, freeX0_sup, freeXs = utils_vox.prep_occs_supervision(
                xyz_camXs, occX0s_half, occXs_half, camX0_T_camXs, agg=True)

            summ_writer.summ_occ('occ_sup/occ_sup', occX0_sup)
            summ_writer.summ_occ('occ_sup/free_sup', freeX0_sup)
            summ_writer.summ_occs('occ_sup/freeXs_sup',
                                  torch.unbind(freeXs, dim=1))
            summ_writer.summ_occs('occ_sup/occXs_sup',
                                  torch.unbind(occXs_half, dim=1))

            occ_loss, occRs_pred_ = self.occnet(
                torch.mean(featX0s[:, 1:], dim=1), occX0_sup, freeX0_sup,
                torch.max(validX0s[:, 1:], dim=1)[0], summ_writer)
            occRs_pred = __u(occRs_pred_)
            total_loss += occ_loss

        if hyp.do_view:
            assert (hyp.do_feat)
            # we warped the features into the canonical view
            # now we resample to the target view and decode

            PH, PW = hyp.PH, hyp.PW
            sy = float(PH) / float(hyp.H)
            sx = float(PW) / float(hyp.W)
            assert (sx == 0.5)  # else we need a fancier downsampler
            assert (sy == 0.5)
            projpix_T_cams = __u(
                utils_geom.scale_intrinsics(__p(pix_T_cams), sx, sy))

            assert (S == 2)  # else we should warp each feat in 1:
            feat_projX00 = utils_vox.apply_pixX_T_memR_to_voxR(
                projpix_T_cams[:, 0], camX0_T_camXs[:, 1], featXs[:, 1],
                hyp.view_depth, PH, PW)
            # feat_projX0 is B x hyp.feat_dim x hyp.view_depth x PH x PW
            rgb_X00 = downsample(rgb_camXs[:, 0], 2)

            if summ_writer.save_this:
                # for vis, let's also project some rgb
                rgb_projX00 = utils_vox.apply_pixX_T_memR_to_voxR(
                    projpix_T_cams[:, 0], camXs_T_camRs[:, 0], unpRs[:, 0],
                    hyp.view_depth, PH, PW)
                rgb_projX01 = utils_vox.apply_pixX_T_memR_to_voxR(
                    projpix_T_cams[:, 1], camXs_T_camRs[:, 1], unpRs[:, 1],
                    hyp.view_depth, PH, PW)
                occ_projX00 = utils_vox.apply_pixX_T_memR_to_voxR(
                    projpix_T_cams[:, 0], camXs_T_camRs[:, 0], occRs[:, 0],
                    hyp.view_depth, PH, PW)
                occ_projX01 = utils_vox.apply_pixX_T_memR_to_voxR(
                    projpix_T_cams[:, 1], camXs_T_camRs[:, 1], occRs[:, 1],
                    hyp.view_depth, PH, PW)
                rgb_projX00_vis = reduce_masked_mean(rgb_projX00,
                                                     occ_projX00.repeat(
                                                         [1, 3, 1, 1, 1]),
                                                     dim=2)
                rgb_projX01_vis = reduce_masked_mean(rgb_projX01,
                                                     occ_projX01.repeat(
                                                         [1, 3, 1, 1, 1]),
                                                     dim=2)
                summ_writer.summ_rgbs('projection/rgb_projX',
                                      [rgb_projX00_vis, rgb_projX01_vis])
                rgb_X01 = downsample(rgb_camXs[:, 1], 2)
                summ_writer.summ_rgbs('projection/rgb_origX',
                                      [rgb_X00, rgb_X01])

            # decode the perspective volume into an image
            view_loss, rgb_e, emb2D_e = self.viewnet(feat_projX00, rgb_X00,
                                                     summ_writer)
            total_loss += view_loss

        if hyp.do_emb2D:
            assert (hyp.do_view)
            # create an embedding image, representing the bottom-up 2D feature tensor

            emb_loss_2D, emb2D_g = self.embnet2D(rgb_camXs[:, 0], emb2D_e,
                                                 valid_camXs[:,
                                                             0], summ_writer)
            total_loss += emb_loss_2D

        if hyp.do_emb3D:
            occX0_sup, freeX0_sup, freeXs = utils_vox.prep_occs_supervision(
                xyz_camXs, occX0s_half, occXs_half, camX0_T_camXs, agg=True)

            emb_loss_3D = self.embnet3D(emb3D_e, emb3D_g, vis3D_e, vis3D_g,
                                        summ_writer)
            total_loss += emb_loss_3D

        if hyp.do_eval_recall:
            results['emb2D_e'] = None
            results['emb2D_g'] = None

        summ_writer.summ_scalar('loss', total_loss.cpu().item())
        return total_loss, results