Exemplo n.º 1
0
def run_until_exemplar_decision_signal(ibs, cm, qreq_, incinfo=None):
    """
    DECISION STEP 3)

    Either the system or the user decides if the query should be added to the
    database as an exemplar.
    """
    qaid = cm.qaid
    exemplar_confidence_thresh = ut.get_sys_maxfloat()
    exmplr_suggestion = automatch_suggestor.get_system_exemplar_suggestion(
        ibs, qaid)
    (autoexemplar_msg, exemplar_decision,
     exemplar_condience) = exmplr_suggestion
    print('autoexemplar_msg=')
    print(autoexemplar_msg)
    # HACK: Disable asking users a about exemplars
    need_user_input = False and (
        incinfo.get('interactive', False)
        and exemplar_condience < exemplar_confidence_thresh)
    if need_user_input:
        user_dialogs.wait_for_user_exemplar_decision(autoexemplar_msg,
                                                     exemplar_decision,
                                                     exemplar_condience)
    else:
        # May need to execute callback whereas whatever the interaction was
        # would issue it otherwise
        exec_exemplar_decision_and_continue(exemplar_decision,
                                            ibs,
                                            cm,
                                            qreq_,
                                            incinfo=incinfo)
Exemplo n.º 2
0
def run_until_exemplar_decision_signal(ibs, cm, qreq_, incinfo=None):
    """
    DECISION STEP 3)

    Either the system or the user decides if the query should be added to the
    database as an exemplar.
    """
    qaid = cm.qaid
    exemplar_confidence_thresh = ut.get_sys_maxfloat()
    exmplr_suggestion = automatch_suggestor.get_system_exemplar_suggestion(ibs, qaid)
    (autoexemplar_msg, exemplar_decision, exemplar_condience) = exmplr_suggestion
    print('autoexemplar_msg=')
    print(autoexemplar_msg)
    # HACK: Disable asking users a about exemplars
    need_user_input = False and (incinfo.get('interactive', False) and exemplar_condience < exemplar_confidence_thresh)
    if need_user_input:
        user_dialogs.wait_for_user_exemplar_decision(
            autoexemplar_msg, exemplar_decision, exemplar_condience)
    else:
        # May need to execute callback whereas whatever the interaction was
        # would issue it otherwise
        exec_exemplar_decision_and_continue(exemplar_decision, ibs, cm, qreq_, incinfo=incinfo)
Exemplo n.º 3
0
def get_system_name_suggestion(ibs, choicetup):
    """
    Suggests a decision based on the current choices

    Args:
        ibs      (IBEISController):
        qaid      (int):  query annotation id
        cm      (QueryResult):  object of feature correspondences and scores
        metatup   (None):

    Returns:
        tuple: (autoname_msg, autoname_func)

    CommandLine:
        python -m ibeis.algo.hots.automated_matcher --test-test_incremental_queries:0
        python -m ibeis.algo.hots.automated_matcher --test-test_incremental_queries:1
        python -m ibeis.algo.hots.automated_matcher --test-get_system_name_suggestion

    Example:
        >>> # DISABLE_DOCTEST
        >>> from ibeis.algo.hots.automatch_suggestor import *  # NOQA
        >>> import ibeis
        >>> # build test data
        >>> cm, qreq_ = ibeis.testdata_cm()
        >>> ibs = qreq_.ibs
        >>> choicetup = get_qres_name_choices(ibs, cm)
        >>> (autoname_msg, name, name_confidence) = get_system_name_suggestion(ibs, choicetup)
        >>> # verify results
        >>> result = str((autoname_msg, name, name_confidence))
        >>> print(result)

    """
    threshold = ut.get_sys_maxfloat()
    (sorted_nids, sorted_nscore, sorted_rawscore, sorted_aids, sorted_ascores) = choicetup

    autoname_msg_list = []
    if len(sorted_nids) == 0:
        autoname_msg_list.append('Unable to find any matches')
        # if we can't find any matches then we must be sure it is a
        # new name. A false negative here can only be fixed with a merge
        name_confidence = 1.0
        nid, score, rank = None, None, None
    else:
        name_confidence = 0
        candidate_indexes = np.where(sorted_nscore > threshold)[0]
        if len(candidate_indexes) == 0:
            rank = None
            autoname_msg_list.append('No candidates above threshold')
        else:
            sortx = sorted_nscore[candidate_indexes].argsort()[::-1]
            rank = sortx[0]
            multiple_candidates = len(candidate_indexes) > 1
            if multiple_candidates:
                autoname_msg_list.append('Multiple candidates above threshold')
            else:
                autoname_msg_list.append('Single candidate above threshold')

    # Get system suggested nid and message
    if rank is not None:
        score = sorted_nscore[rank]
        nid = sorted_nids[rank]
        rawscore = sorted_rawscore[rank][0]
        msg_fmtstr = 'suggesting nid=%r, score=%.2f, rank=%r, rawscore=%.2f'
        msg = msg_fmtstr % (nid, score, rank, rawscore)
        autoname_msg_list.append(msg)
    else:
        nid, score, rawscore = None, None, None
        autoname_msg_list.append('suggesting new name')
    autoname_msg = '\n'.join(autoname_msg_list)

    name = ibs.get_name_texts(nid) if nid is not None else None
    if name is None:
        chosen_names = []
    else:
        chosen_names = [name]
    system_name_suggest_tup = (autoname_msg, chosen_names, name_confidence,)
    return system_name_suggest_tup
Exemplo n.º 4
0
def get_system_name_suggestion(ibs, choicetup):
    """
    Suggests a decision based on the current choices

    Args:
        ibs      (IBEISController):
        qaid      (int):  query annotation id
        cm      (QueryResult):  object of feature correspondences and scores
        metatup   (None):

    Returns:
        tuple: (autoname_msg, autoname_func)

    CommandLine:
        python -m ibeis.algo.hots.automated_matcher --test-test_incremental_queries:0
        python -m ibeis.algo.hots.automated_matcher --test-test_incremental_queries:1
        python -m ibeis.algo.hots.automated_matcher --test-get_system_name_suggestion

    Example:
        >>> # DISABLE_DOCTEST
        >>> from ibeis.algo.hots.automatch_suggestor import *  # NOQA
        >>> import ibeis
        >>> # build test data
        >>> cm, qreq_ = ibeis.testdata_cm()
        >>> ibs = qreq_.ibs
        >>> choicetup = get_qres_name_choices(ibs, cm)
        >>> (autoname_msg, name, name_confidence) = get_system_name_suggestion(ibs, choicetup)
        >>> # verify results
        >>> result = str((autoname_msg, name, name_confidence))
        >>> print(result)

    """
    threshold = ut.get_sys_maxfloat()
    (sorted_nids, sorted_nscore, sorted_rawscore, sorted_aids,
     sorted_ascores) = choicetup

    autoname_msg_list = []
    if len(sorted_nids) == 0:
        autoname_msg_list.append('Unable to find any matches')
        # if we can't find any matches then we must be sure it is a
        # new name. A false negative here can only be fixed with a merge
        name_confidence = 1.0
        nid, score, rank = None, None, None
    else:
        name_confidence = 0
        candidate_indexes = np.where(sorted_nscore > threshold)[0]
        if len(candidate_indexes) == 0:
            rank = None
            autoname_msg_list.append('No candidates above threshold')
        else:
            sortx = sorted_nscore[candidate_indexes].argsort()[::-1]
            rank = sortx[0]
            multiple_candidates = len(candidate_indexes) > 1
            if multiple_candidates:
                autoname_msg_list.append('Multiple candidates above threshold')
            else:
                autoname_msg_list.append('Single candidate above threshold')

    # Get system suggested nid and message
    if rank is not None:
        score = sorted_nscore[rank]
        nid = sorted_nids[rank]
        rawscore = sorted_rawscore[rank][0]
        msg_fmtstr = 'suggesting nid=%r, score=%.2f, rank=%r, rawscore=%.2f'
        msg = msg_fmtstr % (nid, score, rank, rawscore)
        autoname_msg_list.append(msg)
    else:
        nid, score, rawscore = None, None, None
        autoname_msg_list.append('suggesting new name')
    autoname_msg = '\n'.join(autoname_msg_list)

    name = ibs.get_name_texts(nid) if nid is not None else None
    if name is None:
        chosen_names = []
    else:
        chosen_names = [name]
    system_name_suggest_tup = (
        autoname_msg,
        chosen_names,
        name_confidence,
    )
    return system_name_suggest_tup