Exemplo n.º 1
0
import tensorflow as tf
import os
from variant import VARIANT, get_env_from_name, get_policy, get_train, get_eval
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1"

import ENV.env
if __name__ == '__main__':
    root_dir = VARIANT['log_path']
    if VARIANT['train']:
        for i in range(VARIANT['start_of_trial'],
                       VARIANT['start_of_trial'] + VARIANT['num_of_trials']):
            print(VARIANT)
            VARIANT['log_path'] = root_dir + '/' + str(i)
            train = get_train(VARIANT['algorithm_name'])
            train(VARIANT)

            tf.reset_default_graph()
    else:
        eval = get_eval(VARIANT['algorithm_name'])
        eval(VARIANT)
Exemplo n.º 2
0
import tensorflow as tf
import os
from variant import VARIANT, get_env_from_name, get_train, get_eval

os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1"


if __name__ == "__main__":
    root_dir = VARIANT["log_path"]
    if VARIANT["train"]:
        for i in range(
            VARIANT["start_of_trial"],
            VARIANT["start_of_trial"] + VARIANT["num_of_trials"],
        ):
            VARIANT["log_path"] = root_dir + "/" + str(i)
            print("logging to " + VARIANT["log_path"])
            train = get_train(VARIANT["algorithm_name"])
            train(VARIANT)

            tf.reset_default_graph()
    else:
        print("evaluation")
        eval = get_eval(VARIANT["algorithm_name"])
        eval(VARIANT)