Exemplo n.º 1
0
def get_intersection(agent, ray, segment):

    r_ptx = ray[0][0]
    r_pty = ray[0][1]
    r_dx = ray[1][0] - ray[0][0]
    r_dy = ray[1][1] - ray[0][1]

    sg_ptx = segment[0][0]
    sg_pty = segment[0][1]
    sg_dx = segment[1][0] - segment[0][0]
    sg_dy = segment[1][1] - segment[0][1]

    r_mag = vo.magnitude((r_dx, r_dy))
    sg_mag = vo.magnitude((sg_dx, sg_dy))
    if (r_dx / r_mag == sg_dx / sg_mag) and (r_dy / r_mag == sg_dy / sg_mag):
        return None

    t2 = (r_dx * (sg_pty - r_pty) + r_dy *
          (r_ptx - sg_ptx)) / (sg_dx * r_dy - sg_dy * r_dx)
    t1 = (sg_ptx + sg_dx * t2 - r_ptx) / (r_dx)

    factor = t1

    if t1 <= 0:
        return None
    if t2 < 0 or t2 > 1:
        return None
    #if t1 * t1 * (r_dx * r_dx + r_dy * r_dy) > agent.vision_range * agent.vision_range:
    #factor = sqrt(agent.vision_range / (r_dx * r_dx + r_dy * r_dy));

    x = r_ptx + r_dx * factor
    y = r_pty + r_dy * factor

    return ((x, y), t1)
Exemplo n.º 2
0
def inside_bounding_circle(agent, wall):
    v = ((wall[1][0] - wall[0][0]), (wall[1][1] - wall[0][1]))
    center = agent.position
    pt_v = ((center[0] - wall[0][0]), (center[1] - wall[0][1]))
    v_magn = vo.magnitude(v)
    unit_v = vo.unit_vector(v)
    scalar_projection = pt_v[0] * unit_v[0] + pt_v[1] * unit_v[1]
    if scalar_projection < 0: closest = wall[0]
    elif scalar_projection > v_magn: closest = wall[1]
    else:
        proj_v = ((unit_v[0] * scalar_projection),
                  (unit_v[1] * scalar_projection))
        closest = ((wall[0][0] + proj_v[0]), (wall[0][1] + proj_v[1]))
    dist_v = vo.magnitude(((center[0] - closest[0]), (center[1] - closest[1])))
    if dist_v < agent.vision_range:
        return True
    return False
Exemplo n.º 3
0
def find_eigenvector(A, tolerance=0.00001):
    guess = [random.random() for _ in A]

    while True:
        result = matrix_operate(A, guess)
        length = magnitude(result)
        next_guess = scalar_multiply(1 / length, result)

        if distance(guess, next_guess) < tolerance:
            return next_guess, length  # eigenvector, eigenvalue

        guess = next_guess
def find_eigenvector(A, tolerance=0.00001):
    guess = [random.random() for _ in A]

    while True:
        result = matrix_operate(A, guess)
        length = magnitude(result)
        next_guess = scalar_multiply(1/length, result)

        if distance(guess, next_guess) < tolerance:
            return next_guess, length               # eigenvector, eigenvalue

        guess = next_guess
def find_eigenvector(m: Matrix, tolerance: float = 0.00001) -> Tuple[Vector, float]:
    guess = [random.random() for _ in m]
    
    while True:
        result = matrix_times_vector(m, guess) # transform the guess
        norm = magnitude(result) # compute the norm
        next_guess = [x/norm for x in result] # rescale
        
        if distance(guess, next_guess) < tolerance:
            # convergence so return (eigenvector, eigenvalue)
            return next_guess, norm
        
        guess = next_guess

        
    return 1 if (i,j) in friend_pairs or (j,i) in friend_pairs else 0
Exemplo n.º 6
0
def calculate_visible_vertices(agent, map):
    elements = get_rays(agent, map)
    rays = elements[0]
    walls = elements[1]
    visible_vertices = []

    for ray in rays:
        intersection = get_closest_intersection(agent, ray, walls)

        if intersection and intersection == ray[1]:
            intersection_vector = ((intersection[0] - agent.position[0]),
                                   (intersection[1] - agent.position[1]))
            angle = vo.get_relative_angle(agent.orientation_reference_vector,
                                          intersection_vector)
            distance = vo.magnitude(intersection_vector)
            visible_vertices.append((angle, distance))
    visible_vertices.sort(key=lambda x: x[0])
    return visible_vertices
Exemplo n.º 7
0
def calculate_visible_vertices(agent, map, hash_table):
    visible_vertices = []
    agent_position = agent.position
    rays = get_rays(agent_position, map)

    for ray in rays:
        intersection = get_closest_intersection(ray, map, hash_table)

        if intersection and intersection == ray[1]:
            intersection_vector = ((intersection[0] - agent.position[0]),
                                   (intersection[1] - agent.position[1]))
            angle = vo.get_relative_angle(agent.orientation_reference_vector,
                                          intersection_vector)
            distance = vo.magnitude(intersection_vector)
            visible_vertices.append((angle, distance))

    visible_vertices.sort(key=lambda x: x[0])

    return visible_vertices
Exemplo n.º 8
0
def direction(w):
    mag = magnitude(w)
    return [w_i / mag for w_i in w]