Exemplo n.º 1
0
class LanguageBitBilingualSpeakerLearner(BilingualSpeakerLearner):
    def get_extra_vars(self):
        id_tag = (self.id + '/') if self.id else ''

        return [T.ivector(id_tag + 'languages')]

    def _data_to_arrays(self,
                        training_instances,
                        init_vectorizer=False,
                        test=False,
                        inverted=False):
        xs, ys = super(LanguageBitBilingualSpeakerLearner,
                       self)._data_to_arrays(
                           training_instances=training_instances,
                           init_vectorizer=init_vectorizer,
                           test=test,
                           inverted=inverted)
        langs = [inst.output.split(':', 1)[0] for inst in training_instances]
        if init_vectorizer:
            self.lang_vec = SymbolVectorizer(use_unk=False)
            self.lang_vec.add_all(langs)
        langs_vec = self.lang_vec.vectorize_all(langs)
        return xs[:-2] + [langs_vec] + xs[-2:], ys

    def modify_context(self, l_context_repr, extra_vars):
        language = extra_vars[0]
        id_tag = (self.id + '/') if self.id else ''

        print('l_context_repr: {}'.format(l_context_repr.output_shape))

        l_lang_input = InputLayer(shape=(None, ),
                                  input_var=language,
                                  name=id_tag + 'lang_input')
        l_lang_embed = EmbeddingLayer(
            l_lang_input,
            input_size=len(self.lang_vec.tokens),
            output_size=self.options.bilingual_lang_embed_size,
            name=id_tag + 'lang_embed')
        print('l_lang_embed: {}'.format(l_lang_embed.output_shape))

        l_modified_context = ConcatLayer([l_lang_embed, l_context_repr])
        print('l_modified_context: {}'.format(l_modified_context.output_shape))

        return (l_modified_context, [l_lang_input])

    def __getstate__(self):
        super_state = super(LanguageBitBilingualSpeakerLearner,
                            self).__getstate__()
        return super_state + (self.lang_vec, )

    def unpickle(self, state, model_class=SimpleLasagneModel):
        if isinstance(
                state,
                dict) and 'quickpickle' in state and state['quickpickle']:
            super(LanguageBitBilingualSpeakerLearner,
                  self).unpickle(state, model_class=model_class)
        else:
            self.lang_vec = state[-1]
            super(LanguageBitBilingualSpeakerLearner,
                  self).unpickle(state[:-1], model_class=model_class)
Exemplo n.º 2
0
class AtomicUniformPrior(object):
    '''
    >>> p = AtomicUniformPrior()
    >>> p.train([instance.Instance('blue')])
    >>> p.sample(3)  # doctest: +ELLIPSIS
    [Instance('...', None), Instance('...', None), Instance('...', None)]
    '''
    def __init__(self):
        self.vec = SymbolVectorizer()

    def train(self, training_instances, listener_data=True):
        self.vec.add_all([inst.input if listener_data else inst.output
                          for inst in training_instances])

    def apply(self, input_vars):
        c = input_vars[0]
        if c.ndim == 1:
            ones = T.ones_like(c)
        else:
            ones = T.ones_like(c[:, 0])
        return -np.log(self.vec.num_types) * ones

    def sample(self, num_samples=1):
        indices = random.randint(0, self.vec.num_types, size=(num_samples,))
        return [instance.Instance(c) for c in self.vec.unvectorize_all(indices)]
Exemplo n.º 3
0
class AtomicUniformPrior(object):
    '''
    >>> p = AtomicUniformPrior()
    >>> p.train([instance.Instance('blue')])
    >>> p.sample(3)  # doctest: +ELLIPSIS
    [Instance('...', None), Instance('...', None), Instance('...', None)]
    '''
    def __init__(self):
        self.vec = SymbolVectorizer()

    def train(self, training_instances, listener_data=True):
        self.vec.add_all([
            inst.input if listener_data else inst.output
            for inst in training_instances
        ])

    def apply(self, input_vars):
        c = input_vars[0]
        if c.ndim == 1:
            ones = T.ones_like(c)
        else:
            ones = T.ones_like(c[:, 0])
        return -np.log(self.vec.num_types) * ones

    def sample(self, num_samples=1):
        indices = random.randint(0, self.vec.num_types, size=(num_samples, ))
        return [
            instance.Instance(c) for c in self.vec.unvectorize_all(indices)
        ]
Exemplo n.º 4
0
 def unpickle(self, state, model_class=SimpleLasagneModel):
     if isinstance(state, tuple) and isinstance(state[-1],
                                                SymbolVectorizer):
         self.lang_vec = state[-1]
         super(BilingualGaussianListenerLearner,
               self).unpickle(state[:-1], model_class=model_class)
     else:
         self.lang_vec = SymbolVectorizer(use_unk=False)
         self.lang_vec.add_all(['en', 'zh'])
         super(BilingualGaussianListenerLearner,
               self).unpickle(state, model_class=model_class)
Exemplo n.º 5
0
 def _data_to_arrays(self,
                     training_instances,
                     init_vectorizer=False,
                     test=False,
                     inverted=False):
     xs, ys = super(BilingualGaussianListenerLearner, self)._data_to_arrays(
         training_instances=training_instances,
         init_vectorizer=init_vectorizer,
         test=test,
         inverted=inverted)
     langs = [inst.input.split(':', 1)[0] for inst in training_instances]
     if init_vectorizer:
         self.lang_vec = SymbolVectorizer(use_unk=False)
         self.lang_vec.add_all(langs)
     langs_vec = self.lang_vec.vectorize_all(langs)
     return xs[:1] + [langs_vec] + xs[1:], ys
Exemplo n.º 6
0
class BilingualGaussianListenerLearner(listener.GaussianContextListenerLearner
                                       ):
    def get_extra_vars(self):
        id_tag = (self.id + '/') if self.id else ''

        return [T.ivector(id_tag + 'languages')]

    def _data_to_arrays(self,
                        training_instances,
                        init_vectorizer=False,
                        test=False,
                        inverted=False):
        xs, ys = super(BilingualGaussianListenerLearner, self)._data_to_arrays(
            training_instances=training_instances,
            init_vectorizer=init_vectorizer,
            test=test,
            inverted=inverted)
        langs = [inst.input.split(':', 1)[0] for inst in training_instances]
        if init_vectorizer:
            self.lang_vec = SymbolVectorizer(use_unk=False)
            self.lang_vec.add_all(langs)
        langs_vec = self.lang_vec.vectorize_all(langs)
        return xs[:1] + [langs_vec] + xs[1:], ys

    def get_embedding_layer(self, l_in, extra_vars):
        language = extra_vars[0]
        context_vars = extra_vars[1:]

        id_tag = (self.id + '/') if self.id else ''

        l_lang = InputLayer(shape=(None, ),
                            input_var=language,
                            name=id_tag + 'lang_input')

        if self.options.bilingual_en_embed_file:
            en_embeddings = load_embeddings(
                self.options.bilingual_en_embed_file, self.seq_vec)
            en_embed_size = en_embeddings.shape[1]
        else:
            en_embeddings = Normal()
            en_embed_size = self.options.bilingual_embed_size

        if self.options.bilingual_zh_embed_file:
            zh_embeddings = load_embeddings(
                self.options.bilingual_zh_embed_file, self.seq_vec)
            zh_embed_size = zh_embeddings.shape[1]
        else:
            zh_embeddings = Normal()
            zh_embed_size = self.options.bilingual_embed_size

        l_en = EmbeddingLayer(l_in,
                              input_size=len(self.seq_vec.tokens),
                              output_size=en_embed_size,
                              W=en_embeddings,
                              name=id_tag + 'desc_embed_en')
        l_en_transformed = dimshuffle(l_en, (0, 2, 1))
        l_en_transformed = NINLayer(l_en_transformed,
                                    num_units=self.options.listener_cell_size,
                                    nonlinearity=None,
                                    name=id_tag + 'desc_embed_en_transformed')
        l_en_transformed = dimshuffle(l_en_transformed, (0, 2, 1))

        l_zh = EmbeddingLayer(l_in,
                              input_size=len(self.seq_vec.tokens),
                              output_size=zh_embed_size,
                              W=zh_embeddings,
                              name=id_tag + 'desc_embed_zh')
        l_zh_transformed = dimshuffle(l_zh, (0, 2, 1))
        l_zh_transformed = NINLayer(l_zh_transformed,
                                    num_units=self.options.listener_cell_size,
                                    nonlinearity=None,
                                    name=id_tag + 'desc_embed_zh_transformed')
        l_zh_transformed = dimshuffle(l_zh_transformed, (0, 2, 1))
        l_merged = SwitchLayer(l_lang, [l_en_transformed, l_zh_transformed],
                               name=id_tag + 'desc_embed_switch')
        return (l_merged, context_vars)

    def unpickle(self, state, model_class=SimpleLasagneModel):
        if isinstance(state, tuple) and isinstance(state[-1],
                                                   SymbolVectorizer):
            self.lang_vec = state[-1]
            super(BilingualGaussianListenerLearner,
                  self).unpickle(state[:-1], model_class=model_class)
        else:
            self.lang_vec = SymbolVectorizer(use_unk=False)
            self.lang_vec.add_all(['en', 'zh'])
            super(BilingualGaussianListenerLearner,
                  self).unpickle(state, model_class=model_class)
Exemplo n.º 7
0
 def __init__(self, id=None):
     super(AtomicSpeakerLearner, self).__init__(id=id)
     self.seq_vec = SymbolVectorizer()
     color_repr = COLOR_REPRS[self.options.speaker_color_repr]
     self.color_vec = color_repr(self.options.speaker_color_resolution,
                                 hsv=self.options.speaker_hsv)
Exemplo n.º 8
0
class AtomicSpeakerLearner(NeuralLearner):
    '''
    A speaker that learns to produce descriptions as indivisible symbols (as
    opposed to word-by-word sequences) given colors.
    '''
    def __init__(self, id=None):
        super(AtomicSpeakerLearner, self).__init__(id=id)
        self.seq_vec = SymbolVectorizer()
        color_repr = COLOR_REPRS[self.options.speaker_color_repr]
        self.color_vec = color_repr(self.options.speaker_color_resolution,
                                    hsv=self.options.speaker_hsv)

    def predict_and_score(self, eval_instances, random=False, verbosity=0):
        predictions = []
        scores = []
        batches = iterators.iter_batches(eval_instances,
                                         self.options.speaker_eval_batch_size)
        num_batches = (len(eval_instances) -
                       1) // self.options.speaker_eval_batch_size + 1

        if self.options.verbosity + verbosity >= 2:
            print('Testing')
        if self.options.verbosity + verbosity >= 1:
            progress.start_task('Eval batch', num_batches)
        for batch_num, batch in enumerate(batches):
            if self.options.verbosity + verbosity >= 1:
                progress.progress(batch_num)
            batch = list(batch)

            xs, (y, ) = self._data_to_arrays(batch, test=True)

            probs = self.model.predict(xs)
            if random:
                indices = sample(probs)
            else:
                indices = probs.argmax(axis=1)
            predictions.extend(self.seq_vec.unvectorize_all(indices))
            scores_arr = np.log(probs[np.arange(len(batch)), y])
            scores.extend(scores_arr.tolist())
        if self.options.verbosity + verbosity >= 1:
            progress.end_task()
        if self.options.verbosity >= 9:
            print('%s %ss:') % (self.id, 'sample' if random else 'prediction')
            for inst, prediction in zip(eval_instances, predictions):
                print('%s -> %s' % (repr(inst.input), repr(prediction)))

        return predictions, scores

    def _data_to_arrays(self,
                        training_instances,
                        init_vectorizer=False,
                        test=False,
                        inverted=False):
        get_i, get_o = (lambda inst: inst.input), (lambda inst: inst.output)
        get_color, get_desc = (get_o, get_i) if inverted else (get_i, get_o)

        if init_vectorizer:
            self.seq_vec.add_all(get_desc(inst) for inst in training_instances)

        sentences = []
        colors = []
        if self.options.verbosity >= 9:
            print('%s _data_to_arrays:' % self.id)
        for i, inst in enumerate(training_instances):
            desc = get_desc(inst)
            if desc is None:
                assert test
                desc = '<unk>'
            color = get_color(inst)
            assert color
            if self.options.verbosity >= 9:
                print('%s -> %s' % (repr(desc), repr(color)))
            sentences.append(desc)
            colors.append(color)

        x = self.color_vec.vectorize_all(colors, hsv=True)
        if len(x.shape) == 1:
            x = x[:, np.newaxis]
        y = self.seq_vec.vectorize_all(sentences)
        if self.options.verbosity >= 9:
            print('%s x: %s' % (self.id, x))
            print('%s y: %s' % (self.id, y))

        return [x], [y]

    def _build_model(self, model_class=SimpleLasagneModel):
        id_tag = (self.id + '/') if self.id else ''
        input_vars = self.color_vec.get_input_vars(self.id)
        target_var = T.ivector(id_tag + 'targets')

        self.l_out, self.input_layers = self._get_l_out(input_vars)
        self.loss = categorical_crossentropy

        self.model = model_class(input_vars, [target_var],
                                 self.l_out,
                                 loss=self.loss,
                                 optimizer=rmsprop,
                                 id=self.id)

    def train_priors(self, training_instances, listener_data=False):
        prior_class = PRIORS[self.options.speaker_prior]
        self.prior_emp = prior_class()
        self.prior_smooth = prior_class()

        self.prior_emp.train(training_instances, listener_data=listener_data)
        self.prior_smooth.train(training_instances,
                                listener_data=listener_data)

    def _get_l_out(self, input_vars):
        id_tag = (self.id + '/') if self.id else ''

        cell_size = self.options.speaker_cell_size or self.seq_vec.num_types
        l_color_repr, color_inputs = self.color_vec.get_input_layer(
            input_vars, recurrent_length=0, cell_size=cell_size, id=self.id)
        l_hidden_color = l_color_repr
        for i in range(1, self.options.speaker_hidden_color_layers + 1):
            l_hidden_color = NINLayer(
                l_hidden_color,
                num_units=cell_size,
                nonlinearity=NONLINEARITIES[self.options.speaker_nonlinearity],
                name=id_tag + 'hidden_color%d' % i)
        l_hidden_color = l_hidden_color

        if self.options.speaker_cell_size == 0:
            l_scores = l_color_repr  # BiasLayer(l_color_repr, name=id_tag + 'bias')
        else:
            if self.options.speaker_dropout > 0.0:
                l_color_drop = DropoutLayer(l_hidden_color,
                                            p=self.options.speaker_dropout,
                                            name=id_tag + 'color_drop')
            else:
                l_color_drop = l_hidden_color

            l_hidden = DenseLayer(
                l_color_drop,
                num_units=self.options.speaker_cell_size,
                nonlinearity=NONLINEARITIES[self.options.speaker_nonlinearity],
                name=id_tag + 'hidden')
            if self.options.speaker_dropout > 0.0:
                l_hidden_drop = DropoutLayer(l_hidden,
                                             p=self.options.speaker_dropout,
                                             name=id_tag + 'hidden_drop')
            else:
                l_hidden_drop = l_hidden

            l_scores = DenseLayer(l_hidden_drop,
                                  num_units=self.seq_vec.num_types,
                                  nonlinearity=None,
                                  name=id_tag + 'scores')
        l_out = NonlinearityLayer(l_scores,
                                  nonlinearity=softmax,
                                  name=id_tag + 'softmax')

        return l_out, color_inputs

    def sample_prior_smooth(self, num_samples):
        return self.prior_smooth.sample(num_samples)
Exemplo n.º 9
0
 def __init__(self):
     self.vec = SymbolVectorizer()
Exemplo n.º 10
0
 def __init__(self, id=None):
     super(AtomicListenerLearner, self).__init__(id=id)
     self.seq_vec = SymbolVectorizer()
Exemplo n.º 11
0
class AtomicListenerLearner(ListenerLearner):
    '''
    An single-embedding listener (guesses colors from descriptions, where
    the descriptions are treated as indivisible symbols).
    '''
    def __init__(self, id=None):
        super(AtomicListenerLearner, self).__init__(id=id)
        self.seq_vec = SymbolVectorizer()

    def _data_to_arrays(self,
                        training_instances,
                        init_vectorizer=False,
                        test=False,
                        inverted=False):
        get_i, get_o = (lambda inst: inst.input), (lambda inst: inst.output)
        get_desc, get_color = (get_o, get_i) if inverted else (get_i, get_o)

        if init_vectorizer:
            self.seq_vec.add_all(get_desc(inst) for inst in training_instances)

        sentences = []
        colors = []
        if self.options.verbosity >= 9:
            print('%s _data_to_arrays:' % self.id)
        for i, inst in enumerate(training_instances):
            self.word_counts.update([get_desc(inst)])
            desc = get_desc(inst)
            color = get_color(inst)
            if not color:
                assert test
                color = (0.0, 0.0, 0.0)
            if self.options.verbosity >= 9:
                print('%s -> %s' % (repr(desc), repr(color)))
            sentences.append(desc)
            colors.append(color)

        x = np.zeros((len(sentences), ), dtype=np.int32)
        y = np.zeros((len(sentences), ), dtype=np.int32)
        for i, sentence in enumerate(sentences):
            x[i] = self.seq_vec.vectorize(sentence)
            y[i] = self.color_vec.vectorize(colors[i], hsv=True)

        return [x], [y]

    def _build_model(self, model_class=SimpleLasagneModel):
        id_tag = (self.id + '/') if self.id else ''
        input_var = T.ivector(id_tag + 'inputs')
        target_var = T.ivector(id_tag + 'targets')

        self.l_out, self.input_layers = self._get_l_out([input_var])
        self.loss = categorical_crossentropy

        self.model = model_class([input_var], [target_var],
                                 self.l_out,
                                 loss=self.loss,
                                 optimizer=rmsprop,
                                 id=self.id)

    def train_priors(self, training_instances, listener_data=False):
        prior_class = PRIORS[self.options.listener_prior]
        self.prior_emp = prior_class(
        )  # TODO: accurate values for the empirical prior
        self.prior_smooth = prior_class()

        self.prior_emp.train(training_instances, listener_data=listener_data)
        self.prior_smooth.train(training_instances,
                                listener_data=listener_data)

    def _get_l_out(self, input_vars):
        id_tag = (self.id + '/') if self.id else ''

        input_var = input_vars[0]

        l_in = InputLayer(shape=(None, ),
                          input_var=input_var,
                          name=id_tag + 'desc_input')
        embed_size = self.options.listener_cell_size or self.color_vec.num_types
        l_in_embed = EmbeddingLayer(l_in,
                                    input_size=len(self.seq_vec.tokens),
                                    output_size=embed_size,
                                    name=id_tag + 'desc_embed')

        if self.options.listener_cell_size == 0:
            l_scores = l_in_embed  # BiasLayer(l_in_embed, name=id_tag + 'bias')
        else:
            l_hidden = DenseLayer(l_in_embed,
                                  num_units=self.options.listener_cell_size,
                                  nonlinearity=NONLINEARITIES[
                                      self.options.listener_nonlinearity],
                                  name=id_tag + 'hidden')
            if self.options.listener_dropout > 0.0:
                l_hidden_drop = DropoutLayer(l_hidden,
                                             p=self.options.listener_dropout,
                                             name=id_tag + 'hidden_drop')
            else:
                l_hidden_drop = l_hidden

            l_scores = DenseLayer(l_hidden_drop,
                                  num_units=self.color_vec.num_types,
                                  nonlinearity=None,
                                  name=id_tag + 'scores')
        l_out = NonlinearityLayer(l_scores,
                                  nonlinearity=softmax,
                                  name=id_tag + 'out')

        return l_out, [l_in]

    def sample_prior_smooth(self, num_samples):
        return self.prior_smooth.sample(num_samples)
Exemplo n.º 12
0
 def __init__(self, id=None):
     super(AtomicListenerLearner, self).__init__(id=id)
     self.seq_vec = SymbolVectorizer()
Exemplo n.º 13
0
class AtomicListenerLearner(ListenerLearner):
    '''
    An single-embedding listener (guesses colors from descriptions, where
    the descriptions are treated as indivisible symbols).
    '''
    def __init__(self, id=None):
        super(AtomicListenerLearner, self).__init__(id=id)
        self.seq_vec = SymbolVectorizer()

    def _data_to_arrays(self, training_instances,
                        init_vectorizer=False, test=False, inverted=False):
        get_i, get_o = (lambda inst: inst.input), (lambda inst: inst.output)
        get_desc, get_color = (get_o, get_i) if inverted else (get_i, get_o)

        if init_vectorizer:
            self.seq_vec.add_all(get_desc(inst) for inst in training_instances)

        sentences = []
        colors = []
        if self.options.verbosity >= 9:
            print('%s _data_to_arrays:' % self.id)
        for i, inst in enumerate(training_instances):
            self.word_counts.update([get_desc(inst)])
            desc = get_desc(inst)
            color = get_color(inst)
            if not color:
                assert test
                color = (0.0, 0.0, 0.0)
            if self.options.verbosity >= 9:
                print('%s -> %s' % (repr(desc), repr(color)))
            sentences.append(desc)
            colors.append(color)

        x = np.zeros((len(sentences),), dtype=np.int32)
        y = np.zeros((len(sentences),), dtype=np.int32)
        for i, sentence in enumerate(sentences):
            x[i] = self.seq_vec.vectorize(sentence)
            y[i] = self.color_vec.vectorize(colors[i], hsv=True)

        return [x], [y]

    def _build_model(self, model_class=SimpleLasagneModel):
        id_tag = (self.id + '/') if self.id else ''
        input_var = T.ivector(id_tag + 'inputs')
        target_var = T.ivector(id_tag + 'targets')

        self.l_out, self.input_layers = self._get_l_out([input_var])
        self.loss = categorical_crossentropy

        self.model = model_class([input_var], [target_var], self.l_out,
                                 loss=self.loss, optimizer=rmsprop, id=self.id)

    def train_priors(self, training_instances, listener_data=False):
        prior_class = PRIORS[self.options.listener_prior]
        self.prior_emp = prior_class()  # TODO: accurate values for the empirical prior
        self.prior_smooth = prior_class()

        self.prior_emp.train(training_instances, listener_data=listener_data)
        self.prior_smooth.train(training_instances, listener_data=listener_data)

    def _get_l_out(self, input_vars):
        id_tag = (self.id + '/') if self.id else ''

        input_var = input_vars[0]

        l_in = InputLayer(shape=(None,), input_var=input_var,
                          name=id_tag + 'desc_input')
        embed_size = self.options.listener_cell_size or self.color_vec.num_types
        l_in_embed = EmbeddingLayer(l_in, input_size=len(self.seq_vec.tokens),
                                    output_size=embed_size,
                                    name=id_tag + 'desc_embed')

        if self.options.listener_cell_size == 0:
            l_scores = l_in_embed  # BiasLayer(l_in_embed, name=id_tag + 'bias')
        else:
            l_hidden = DenseLayer(l_in_embed, num_units=self.options.listener_cell_size,
                                  nonlinearity=NONLINEARITIES[self.options.listener_nonlinearity],
                                  name=id_tag + 'hidden')
            if self.options.listener_dropout > 0.0:
                l_hidden_drop = DropoutLayer(l_hidden, p=self.options.listener_dropout,
                                             name=id_tag + 'hidden_drop')
            else:
                l_hidden_drop = l_hidden

            l_scores = DenseLayer(l_hidden_drop, num_units=self.color_vec.num_types,
                                  nonlinearity=None, name=id_tag + 'scores')
        l_out = NonlinearityLayer(l_scores, nonlinearity=softmax, name=id_tag + 'out')

        return l_out, [l_in]

    def sample_prior_smooth(self, num_samples):
        return self.prior_smooth.sample(num_samples)
Exemplo n.º 14
0
 def __init__(self):
     self.vec = SymbolVectorizer()