Exemplo n.º 1
0
class DirichletOutputPSP(RandomPSP):
    def simulate(self, args):
        alpha = args.operandValues()[0]
        return simulateDirichlet(alpha, args.np_prng())

    def logDensity(self, val, args):
        alpha = args.operandValues()[0]
        return logDensityDirichlet(val, alpha)

    def description(self, name):
        return "  %s(alphas) samples a simplex point according to the given " \
          "Dirichlet distribution." % name

registerBuiltinSP("dirichlet", \
  typed_nr(DirichletOutputPSP(),
           [t.HomogeneousArrayType(t.PositiveType())], t.SimplexType()))


class SymmetricDirichletOutputPSP(RandomPSP):
    def simulate(self, args):
        (alpha, n) = args.operandValues()
        return simulateDirichlet([float(alpha) for _ in range(int(n))],
                                 args.np_prng())

    def logDensity(self, val, args):
        (alpha, n) = args.operandValues()
        return logDensityDirichlet(val, [float(alpha) for _ in range(int(n))])

    def description(self, name):
        return "  %s(alpha, n) samples a simplex point according to the " \
Exemplo n.º 2
0
"""(Deterministic) basic programming SPs"""

import cPickle as pkl

from venture.lite.exception import VentureValueError
from venture.lite.sp import SPType
from venture.lite.sp_help import binaryPred
from venture.lite.sp_help import deterministic_typed
from venture.lite.sp_help import type_test
from venture.lite.sp_registry import registerBuiltinSP
from venture.lite.utils import raise_
import venture.lite.types as t
import venture.lite.value as v

registerBuiltinSP(
    "eq",
    binaryPred(lambda x, y: x.equal(y),
               descr="eq compares its two arguments for equality"))

registerBuiltinSP(
    "neq",
    binaryPred(lambda x, y: not x.equal(y),
               descr="neq checkes whether its arguments are not equal"))

registerBuiltinSP("gt", binaryPred(lambda x,y: x.compare(y) >  0,
    descr="gt returns true if its first argument compares greater " \
          "than its second"))

registerBuiltinSP("gte", binaryPred(lambda x,y: x.compare(y) >= 0,
    descr="gte returns true if its first argument compares greater " \
          "than or equal to its second"))
Exemplo n.º 3
0
  @override(DeterministicPSP)
  def canAbsorb(self, _trace, appNode, parentNode):
    return parentNode != appNode.operandNodes[2]

  @override(DeterministicPSP)
  def description(self,name):
    return "%s returns its third argument unchanged at runtime, " \
      "but tags the subexpression creating the object as being " \
      "within the given scope and block." % name

def isTagOutputPSP(thing):
  return isinstance(thing, TagOutputPSP) or \
    (isinstance(thing, TypedPSP) and isTagOutputPSP(thing.psp))

registerBuiltinSP("tag",
    typed_nr(TagOutputPSP(),
             [t.AnyType("<scope>"), t.AnyType("<block>"), t.AnyType()],
             t.AnyType()))

class TagExcludeOutputPSP(DeterministicPSP):
  @override(DeterministicPSP)
  def simulate(self,args):
    return args.operandValues()[1]

  @override(DeterministicPSP)
  def gradientOfSimulate(self, _args, _value, direction):
    return [0, direction]

  @override(DeterministicPSP)
  def canAbsorb(self, _trace, appNode, parentNode):
    return parentNode != appNode.operandNodes[1]
Exemplo n.º 4
0
        aux.N += 1
        aux.xTotal += x
        aux.STotal += x * x.T

    def unincorporate(self, x, args):
        x = np.mat(x).reshape((self.d, 1))
        aux = args.spaux()
        aux.N -= 1
        aux.xTotal -= x
        aux.STotal -= x * x.T

    def logDensityOfData(self, aux):
        (mN, kN, vN, SN) = self.updatedParams(aux)
        term1 = -(aux.N * self.d * math.log(math.pi)) / 2.
        term2 = logGenGamma(self.d, vN / 2.)
        term3 = -logGenGamma(self.d, self.v0 / 2.)
        term4 = (self.v0 / 2.) * np.linalg.slogdet(self.S0)[1]  # first is sign
        term5 = -(vN / 2.) * np.linalg.slogdet(SN)[1]
        term6 = (self.d / 2.) * math.log(float(self.k0) / kN)
        return term1 + term2 + term3 + term4 + term5 + term6


registerBuiltinSP(
    "make_niw_normal",
    typed_nr(MakeCMVNOutputPSP(), [
        t.HomogeneousArrayType(t.NumberType()),
        t.NumberType(),
        t.NumberType(),
        t.MatrixType()
    ], SPType([], t.HomogeneousArrayType(t.NumberType()))))
Exemplo n.º 5
0
from numbers import Number

import numpy as np

from venture.lite.exception import VentureValueError
from venture.lite.sp_help import deterministic_typed
from venture.lite.sp_help import type_test
from venture.lite.sp_registry import registerBuiltinSP
import venture.lite.value as vv
import venture.lite.types as t
import venture.lite.utils as u

registerBuiltinSP("array",
  deterministic_typed(lambda *args: np.array(args),
    [t.AnyType()], t.ArrayType(), variadic=True,
    sim_grad=lambda args, direction: direction.getArray(),
    descr="array returns an array initialized with its arguments"))

registerBuiltinSP("vector",
  deterministic_typed(lambda *args: np.array(args),
    [t.NumberType()], t.ArrayUnboxedType(t.NumberType()), variadic=True,
    sim_grad=lambda args, direction: direction.getArray(),
    descr="vector returns an unboxed numeric array initialized with its arguments"))

registerBuiltinSP("is_array", type_test(t.ArrayType()))
registerBuiltinSP("is_vector", type_test(t.ArrayUnboxedType(t.NumberType())))

registerBuiltinSP("to_array",
  deterministic_typed(lambda seq: seq.getArray(),
    [t.HomogeneousSequenceType(t.AnyType())], t.ArrayType(),
Exemplo n.º 6
0
        #
        # XXX This implementation will suggest to a multi-site proposal
        # that there are more distinct possibilities than actually exist,
        # if more than one table was emptied by recent unincorporations.
        # This is Github issue #462:
        # https://github.com/probcomp/Venturecxx/issues/462
        if aux.cachedTables:
            tables += sorted(aux.cachedTables.values())
        else:
            tables.append(aux.nextTable)
        return tables


registerBuiltinSP(
    'make_crp',
    typed_nr(MakeCRPOutputPSP(),
             [t.NumberType(), t.NumberType()],
             SPType([], t.AtomType()),
             min_req_args=1))


def draw_crp_samples(n, alpha, np_rng=None):
    """Jointly draw n samples from CRP(alpha).

  This returns an assignment of n objects to clusters, given by a
  length-n list of cluster ids.
  """
    aux = CRPSPAux()
    args = MockArgs([], aux, np_rng=np_rng)
    psp = CRPOutputPSP(alpha, 0)  # No dispersion

    def draw_sample():
Exemplo n.º 7
0
    def logDensity(self, value, args):
        n = args.operandValues()[0]
        xs = args.spaux().xs
        assert len(xs) > n
        theta = np.dot(xs[n], self.O)
        return math.log(theta[value])

    def incorporate(self, value, args):
        n = args.operandValues()[0]
        os = args.spaux().os
        if n not in os: os[n] = []
        os[n].append(value)

    def unincorporate(self, value, args):
        n = args.operandValues()[0]
        os = args.spaux().os
        del os[n][os[n].index(value)]
        if not os[n]: del os[n]


class UncollapsedHMMRequestPSP(DeterministicPSP):
    def simulate(self, args):
        return Request([], [args.operandValues()[0]])


registerBuiltinSP(
    "make_lazy_hmm",
    typed_nr(MakeUncollapsedHMMOutputPSP(),
             [t.SimplexType(), t.MatrixType(),
              t.MatrixType()], SPType([t.CountType()], t.IntegerType())))
Exemplo n.º 8
0
                                                  vvsum(direction)]),
    deterministic_psp(
        np.add,
        sim_grad=lambda args, direction: [vvsum(direction), direction]),
    deterministic_psp(
        lambda *args: np.sum(args, axis=0),
        sim_grad=lambda args, direction: [direction for _ in args],
        descr="add returns the sum of all its arguments"),
    deterministic_psp(symbolic_zero_left,
                      sim_grad=lambda args, direction: [0, direction]),
    deterministic_psp(symbolic_zero_right,
                      sim_grad=lambda args, direction: [direction, 0]),
    deterministic_psp(lambda a, b: a + b),
])

registerBuiltinSP("add", no_request(generic_add))

generic_sub = dispatching_psp([
    SPType([t.NumberType(), t.NumberType()], t.NumberType()),
    SPType([t.ArrayUnboxedType(t.NumberType()),
            t.NumberType()], t.ArrayUnboxedType(t.NumberType())),
    SPType([t.NumberType(), t.ArrayUnboxedType(t.NumberType())],
           t.ArrayUnboxedType(t.NumberType())),
    SPType([
        t.ArrayUnboxedType(t.NumberType()),
        t.ArrayUnboxedType(t.NumberType())
    ], t.ArrayUnboxedType(t.NumberType()))
], [
    deterministic_psp(
        lambda x, y: x - y,
        sim_grad=lambda args, direction: [direction, -direction],
Exemplo n.º 9
0

class MakeMSPOutputPSP(DeterministicPSP):
    def simulate(self, args):
        sharedOperatorNode = args.operandNodes[0]
        return VentureSPRecord(
            SP(MSPRequestPSP(sharedOperatorNode), ESRRefOutputPSP()))

    def description(self, name):
        return "%s returns the stochastically memoized version of the input SP." % name


class MSPRequestPSP(DeterministicPSP):
    def __init__(self, sharedOperatorNode):
        self.sharedOperatorNode = sharedOperatorNode

    def simulate(self, args):
        vals = args.operandValues()
        id = str(vals)
        exp = ["memoizedSP"] + [["quote", val] for val in vals]
        env = VentureEnvironment(None, ["memoizedSP"],
                                 [self.sharedOperatorNode])
        return Request([ESR(id, exp, addr.req_frame(id), env)])


registerBuiltinSP(
    "mem",
    typed_nr(MakeMSPOutputPSP(),
             [SPType([t.AnyType("a")], t.AnyType("b"), variadic=True)],
             SPType([t.AnyType("a")], t.AnyType("b"), variadic=True)))
Exemplo n.º 10
0
        else:
            args.append(VentureArray(flat_args[i:i + s]))
        i += s
    assert i == len(flat_args)
    return args


class ApplyFunctionOutputPSP(DeterministicPSP):
    def simulate(self, args):
        vals = args.operandValues()
        function = vals[0]
        arguments = vals[1:]

        sp_type = function.sp_type
        unwrapped_args = sp_type.unwrap_arg_list(arguments)
        #print sp_type.name(), unwrapped_args

        returned = function.f(*unwrapped_args)
        wrapped_return = sp_type.wrap_return(returned)

        return wrapped_return

    def description(self, _name=None):
        return "Apply a VentureFunction to arguments."


# TODO Add type signature. Look at signature of apply?
applyFunctionSP = SP(NullRequestPSP(), ApplyFunctionOutputPSP())

registerBuiltinSP("apply_function", applyFunctionSP)
Exemplo n.º 11
0
    def simulate(self, args):
        (operator, operands) = args.operandValues()
        exp = [operator] + operands
        env = VentureEnvironment()
        return Request([ESR(args.node, exp, addr.req_frame(0), env)])

    def description(self, name):
        return "%s(func, vals) returns the result of applying a variadic" \
            " function to an array of operands" % name


registerBuiltinSP(
    "apply",
    esr_output(
        TypedPSP(
            ApplyRequestPSP(),
            SPType([
                SPType([t.AnyType("a")], t.AnyType("b"), variadic=True),
                t.HomogeneousArrayType(t.AnyType("a"))
            ], t.RequestType("b")))))


class ArrayMapRequestPSP(DeterministicPSP):
    def simulate(self, args):
        (operator, operands) = args.operandValues()
        exps = [[operator, e.quote(operand)] for operand in operands]
        env = VentureEnvironment()
        return Request([
            ESR((args.node, i), exp, addr.req_frame(i), env)
            for i, exp in enumerate(exps)
        ])
Exemplo n.º 12
0
        else:
            return [True, False]

    def description(self, name):
        return '  {name}(p) returns true with probability p and false otherwise. '\
          'If omitted, p is taken to be 0.5. '\
          'If you are tempted to write ({name} (exp x)),'\
          ' write (log_{name} x) instead. '\
          'If you are tempted to write ({name} (logistic x)),'\
          ' write (log_odds_{name} x) instead.'\
          .format(name=name)


registerBuiltinSP(
    "flip",
    typed_nr(BernoulliOutputPSP(), [t.ProbabilityType()],
             t.BoolType(),
             min_req_args=0))

registerBuiltinSP(
    "bernoulli",
    typed_nr(BernoulliOutputPSP(), [t.ProbabilityType()],
             t.IntegerType(),
             min_req_args=0))


class LogBernoulliOutputPSP(DiscretePSP):
    def simulate(self, args):
        logp = args.operandValues()[0]
        return math.log(args.py_prng().random()) < logp
Exemplo n.º 13
0
# (at your option) any later version.
#
# Venture is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Venture.  If not, see <http://www.gnu.org/licenses/>.

import numpy as np

from venture.lite.sp import SPType
from venture.lite.sp_help import deterministic_psp
from venture.lite.sp_help import dispatching_psp
from venture.lite.sp_help import no_request
from venture.lite.sp_registry import registerBuiltinSP
import venture.lite.types as t

generic_biplex = dispatching_psp(
  [SPType([t.BoolType(), t.AnyType(), t.AnyType()], t.AnyType()),
   SPType([t.ArrayUnboxedType(t.NumberType()), t.ArrayUnboxedType(t.NumberType()), t.ArrayUnboxedType(t.NumberType())], t.ArrayUnboxedType(t.NumberType()))],
  [deterministic_psp(lambda p, c, a: c if p else a,
                     sim_grad=lambda args, direction: [0, direction, 0] if args[0] else [0, 0, direction],
                     descr="biplex returns either its second or third argument, depending on the first."),
   deterministic_psp(np.where,
                     # TODO sim_grad
                     descr="vector-wise biplex")])

registerBuiltinSP("biplex", no_request(generic_biplex))
Exemplo n.º 14
0
        return self._name or '<covariance>'

    def distribution(self, base, **kwargs):
        return None

    def gradient_type(self):
        return t.ArrayUnboxedType(t.NumericArrayType())


makeGPType = SPType(
    [GPMeanType('mean function'),
     GPCovarianceType('covariance kernel')], gpType)

makeGPSP = SP(NullRequestPSP(), TypedPSP(MakeGPOutputPSP(), makeGPType))

registerBuiltinSP('make_gp', makeGPSP)

xType = t.NumericArrayType('x')
oType = t.NumberType('o')


def _mean_sp(F, argtypes):
    def mean_gradientOfSimulate(args, direction):
        return parameter_nest(F(*args).parameters, direction.getArray())

    return deterministic_typed(F,
                               argtypes,
                               GPMeanType(),
                               sim_grad=mean_gradientOfSimulate,
                               descr=F.__doc__)
Exemplo n.º 15
0
from venture.lite.psp import DeterministicPSP
from venture.lite.psp import TypedPSP
from venture.lite.request import ESR
from venture.lite.request import Request
from venture.lite.sp import SPType
from venture.lite.sp_help import esr_output
from venture.lite.sp_help import type_test
from venture.lite.sp_help import typed_func
from venture.lite.sp_help import typed_nr
from venture.lite.sp_registry import registerBuiltinSP
import venture.lite.address as addr
import venture.lite.env as env
import venture.lite.types as t

registerBuiltinSP("get_current_environment",
  typed_func(lambda args: args.env, [], env.EnvironmentType(),
             descr="get_current_environment returns the lexical environment of its invocation site"))

registerBuiltinSP("get_empty_environment",
  typed_func(lambda args: env.VentureEnvironment(), [], env.EnvironmentType(),
             descr="get_empty_environment returns the empty environment"))

registerBuiltinSP("is_environment", type_test(env.EnvironmentType()))

class ExtendEnvOutputPSP(DeterministicPSP):
  def simulate(self,args):
    (en, sym, _) = args.operandValues()
    node = args.operandNodes[2]
    return env.VentureEnvironment(en,[sym],[node])
  def description(self,name):
    return "%s returns an extension of the given environment where the given symbol is bound to the given object" % name
Exemplo n.º 16
0
def register_record(name, *fields):
  (tester, constructor, accessors) = record(name, len(fields))
  registerBuiltinSP(name, constructor)
  registerBuiltinSP("is_" + name, tester)
  for (f, a) in zip(fields, accessors):
    registerBuiltinSP(f, a)