sigma['gaussian_ps']['ero'] = {'': 2.3/2.35*arcsec, 'z1': 2.4*arcsec/2.35} sigma['gaussian_ps']['drg'] = {'': 0.7/2.35*arcsec, 'z1': 0.7*arcsec/2.35} datapath = '/data2/lindroos/ecdfs/aless/stack' # vis = {} model='gaussian_ps' # for sample in samples: # for subsample in subsamples: for sample in ['drg']: for subsample in ['z1']: vis = os.path.join(datapath, sample+subsample, 'stack.uv.ms') parameters, chi2 = \ vesta.run(vis=vis, model=model, flux_ext=flux_ext[model][sample][subsample], dflux_ext = 0.9e-3, flux_ps=flux_ps[model][sample][subsample], dflux_ps = 0.9e-3, sigma=sigma[model][sample][subsample], dsigma=0.40*arcsec, x=0., y=0., nscan = 20) np.save('results/{}_{}_{}_parameters.npy'.format(sample, subsample, model), parameters) np.save('results/{}_{}_{}_chi2.npy'.format(sample, subsample, model), chi2)
sigmas = np.linspace(sigma-dsigma, sigma+dsigma, nscan) fluxes_ext, fluxes_ps, sigmas = meshgrid(fluxes_ext, fluxes_ps, sigmas, indexing='xy') parameters = np.zeros(shape+[5]) parameters[:,:,:,0] = fluxes_ext parameters[:,:,:,1] = xs parameters[:,:,:,2] = ys parameters[:,:,:,3] = sigmas parameters[:,:,:,4] = fluxes_ps # fluxes,sigmas = np.meshgrid(fluxes, sigmas) chi2_scan = libchi2.c_chi2_scan c_chi2 = c_ndarray(chi2, dtype=chi2.dtype, ndim=chi2.ndim) c_parameters = c_ndarray(parameters, dtype=parameters.dtype, ndim=parameters.ndim) chi2_scan(c_chi2, c_int(chi2.ndim), c_char_p(vis), c_model[model], c_parameters) return parameters, chi2 if __name__ == '__main__': import vesta parameters, chi2 = \ vesta.run(vis = '/data2/lindroos/ecdfs/aless/stack/sbzk/stack.uv.ms', flux = 2.3349e-3, dflux = 0.6e-3, sigma=0.30536*arcsec, dsigma=0.16*arcsec, x=1.489274040147295e-07, y=9.887614358626681e-09, nscan = 20) np.save('results/sbzk_parameters.npy', parameters) np.save('results/sbzk_chi2.npy', chi2)