Exemplo n.º 1
0
features_test = test_features
features_0 = basic_features + mdums + cdums
features_1 = basic_features + mdums + cdums + structural_variables
features_2 = basic_features + mdums + cdums + structural_variables + political_variables
features_3 = basic_features + mdums + cdums + structural_variables + political_variables + survey_variables
features_4 = basic_features + mdums + cdums + structural_variables + political_variables + survey_variables + corona_variables

estimators = 200

model_baseline = api.Model(name="benchmark model",
                           col_outcome="ged_dummy_sb",
                           cols_features=features_benchmark,
                           steps=steps,
                           periods=periods,
                           outcome_type="real",
                           estimator=RandomForestRegressor(
                               n_jobs=-1,
                               criterion="mse",
                               n_estimators=estimators),
                           tags=["sb"])

model_0 = api.Model(name="basic model",
                    col_outcome="ged_dummy_sb",
                    cols_features=features_0,
                    steps=steps,
                    periods=periods,
                    outcome_type="real",
                    estimator=RandomForestRegressor(n_jobs=-1,
                                                    criterion="mse",
                                                    n_estimators=estimators),
features_test = test_features
features_0 = basic_features + mdums + cdums
features_1 = basic_features + mdums + cdums + structural_variables + corona_variables
features_2 = basic_features + mdums + cdums + structural_variables + political_variables
features_3 = basic_features + mdums + cdums + structural_variables + corona_variables + political_variables + survey_variables
#features_4 = basic_features + mdums + cdums + structural_variables + political_variables + survey_variables + corona_variables

estimators = 200

model_baseline = api.Model(
    name = "benchmark model",
    col_outcome= "ged_dummy_sb",
    cols_features = features_benchmark,
    steps = steps,
    periods = periods,
    outcome_type = "prob",
    delta_outcome = True,
    estimator=RandomForestClassifier(n_jobs=-1, n_estimators=estimators),
    tags=["sb"]
)

model_d0 = api.Model(
    name = "basic model",
    col_outcome = "ged_dummy_sb",
    cols_features = features_0,
    steps = steps,
    periods = periods,
    outcome_type = "prob",
    delta_outcome = True,
    estimator = RandomForestClassifier(n_jobs=-1, n_estimators=estimators),
Exemplo n.º 3
0
    features_m2 = basic_features + structural_variables + corona_variables + political_variables
    features_m3 = all_vars
elif task == 4:
    features_m1 = basic_features + structural_variables + corona_variables
    features_m2 = basic_features + structural_variables + corona_variables + political_variables
    features_m3 = all_vars

#number of estimator
estimators = 200

#normal models
model_0 = api.Model(name="basic_model ",
                    col_outcome="ged_dummy_sb",
                    cols_features=features_m0,
                    steps=steps,
                    periods=periods,
                    outcome_type="real",
                    estimator=RandomForestRegressor(n_jobs=-1,
                                                    criterion="mse",
                                                    n_estimators=estimators),
                    tags=["sb"])

model_1 = api.Model(name="structural_model ",
                    col_outcome="ged_dummy_sb",
                    cols_features=features_m1,
                    steps=steps,
                    periods=periods,
                    outcome_type="real",
                    estimator=RandomForestRegressor(n_jobs=-1,
                                                    criterion="mse",
                                                    n_estimators=estimators),
                    tags=["sb"])
Exemplo n.º 4
0
rf = RandomForestClassifier(n_jobs=-1, n_estimators=10_000)

# The currently latest model development run id
run_id = "d_2020_04_01"
periods: List[api.Period] = get_periods(run_id=run_id)
steps = [1, 3, 6, 9, 12, 18, 24, 30, 36, 38]

fullsample = api.Downsampling(share_positive=1.0, share_negative=1.0)

cm_sb_vdem_global = api.Model(
    name="cm_sb_vdem_global",
    col_outcome=cm["sb_vdem_global"]["col_outcome"],
    cols_features=cm["sb_vdem_global"]["cols_features"],
    steps=steps,
    outcome_type="prob",
    estimator=rf,
    periods=periods,
    downsampling=fullsample,
    tags=["train_global"],
)
cm_sb_wdi_global = api.Model(
    name="cm_sb_wdi_global",
    col_outcome=cm["sb_wdi_global"]["col_outcome"],
    cols_features=cm["sb_wdi_global"]["cols_features"],
    steps=steps,
    outcome_type="prob",
    estimator=rf,
    periods=periods,
    downsampling=fullsample,
    tags=["train_global"],
Exemplo n.º 5
0
features_0 = basic_features + mdums + cdums
features_1 = benchmark_features
features_2 = basic_features + mdums + cdums + structural_variables + corona_variables + political_variables
#features_1 = political_variables_part
#features_2 = basic_features + mdums + cdums + structural_variables + political_variables
features_3 = basic_features + mdums + cdums + structural_variables + political_variables + survey_variables
#features_4 = basic_features + mdums + cdums + structural_variables

estimators = 200

model_0 = api.Model(name="t4_model_basic",
                    col_outcome="ged_dummy_sb",
                    cols_features=features_0,
                    steps=steps,
                    periods=periods_t4,
                    outcome_type="real",
                    estimator=RandomForestRegressor(n_jobs=-1,
                                                    criterion="mse",
                                                    n_estimators=estimators),
                    tags=["sb"])

model_1 = api.Model(name="t4_model_benchmark",
                    col_outcome="ged_dummy_sb",
                    cols_features=features_1,
                    steps=steps,
                    periods=periods_t4,
                    outcome_type="real",
                    estimator=RandomForestRegressor(n_jobs=-1,
                                                    criterion="mse",
                                                    n_estimators=estimators),
                    tags=["sb"])
Exemplo n.º 6
0
from views.specs.periods import get_periods

log = logging.getLogger(__name__)

rf = RandomForestClassifier(n_jobs=-1, n_estimators=1_000)

# The currently latest model development run id
run_id = "d_2020_04_01"
periods: List[api.Period] = get_periods(run_id=run_id)
steps = [1, 3, 6, 9, 12, 18, 24, 30, 36, 38]

pgm_sb_allthemes = api.Model(
    name="pgm_sb_allthemes",
    col_outcome=pgm["sb_allthemes"]["col_outcome"],
    cols_features=pgm["sb_allthemes"]["cols_features"],
    steps=steps,
    outcome_type="prob",
    estimator=rf,
    periods=periods,
    tags=["train_africa"],
)
pgm_sb_pgd_natural = api.Model(
    name="pgm_sb_pgd_natural",
    col_outcome=pgm["sb_pgd_natural"]["col_outcome"],
    cols_features=pgm["sb_pgd_natural"]["cols_features"],
    steps=steps,
    outcome_type="prob",
    estimator=rf,
    periods=periods,
    tags=["train_africa"],
)
pgm_sb_pgd_social = api.Model(
# In[13]:

# Specify number of estimators in RF estimator
n_estimators = 200

# In[14]:

# Define the benchmark models.
benchmark_delta = api.Model(
    name="benchmark_delta",
    col_outcome="ln_ged_best_sb",
    cols_features=cols_features,
    steps=steps,
    outcome_type="real",
    periods=periods,
    estimator=RandomForestRegressor(
        n_estimators=n_estimators,
        criterion="mse",
        n_jobs=-1,
    ),
    delta_outcome=True,
    downsampling=downsampling,
)

models = [benchmark_delta]

# ## Model fit, prediction, and evaluation

# In[15]:

#get_().run_cell_magic('time', '', '# Train all models\nfor model in models:\n    model.fit_estimators(df)')
Exemplo n.º 8
0
features_m0_t3 = basic_features
features_m1_t3 = basic_features + structural_variables
features_m2_t3 = basic_features + structural_variables + political_variables
features_m3_t3 = basic_features + structural_variables + political_variables + survey_variables

##number of estimator
estimators = 200

##task 1, normal models
model_0_t1 = api.Model(
    name="basic_model_t1",
    col_outcome="ged_dummy_sb",
    cols_features=features_m0_t1,
    steps=steps,
    periods=periods_t1,
    outcome_type="real",
    estimator=RandomForestRegressor(n_jobs=-1,
                                    criterion="mse",
                                    n_estimators=estimators),
    tags=["sb"])

model_1_t1 = api.Model(
    name="structural_model_t1",
    col_outcome="ged_dummy_sb",
    cols_features=features_m1_t1,
    steps=steps,
    periods=periods_t1,
    outcome_type="real",
    estimator=RandomForestRegressor(n_jobs=-1,
                                    criterion="mse",