Exemplo n.º 1
0
    def __init__(self, rag, ndim=3, axis=2):
        self.rag = rag
        self.labels = rag.labels

        self.featureExtractor = graphs.gridRagFeatureExtractor(self.rag, self.labels)
        self.featureExtractor.labels = self.labels
        self.featureExtractor.graph  = self.rag



        self.shape = self.labels.shape
        self.blocking2d = Blocking2d(self.shape[0:2], (40,40))
        self.ndim = ndim
        self.axis = axis
        assert len(self.shape) == ndim

        self.nSlices = 1
        if ndim == 3:
            self.nSlices = self.shape[axis]

        self.sliceDict = None

        # qt gui
        self.win = QtGui.QMainWindow()
        self.win.setWindowTitle('pyqtgraph example: ImageItem')
        self.win.show()
        self.win.resize(800, 600)


        self.cw = QtGui.QWidget()
        self.cw.setMouseTracking(True)
        self.win.setCentralWidget(self.cw)
        self.layout = QtGui.QHBoxLayout()
        self.layout2 = QtGui.QVBoxLayout()
        self.cw.setLayout(self.layout)
        self.gv = pg.GraphicsLayoutWidget()


        self.gv.scene()

        self.gv.setSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Expanding)
        self.gv.setMouseTracking(True)

        self.layerCtrl = BvLayerCtrl()
        self.layout.addLayout(self.layout2)
        self.layout.addWidget(self.layerCtrl)


        self.layout2.addWidget(self.gv,3)
        self.viewBox = BvGridViewBox(blocking2d=self.blocking2d)
        #self.viewBox.setMouseTracking(True)
        self.gv.addItem(self.viewBox)
        self.viewBox.setAspectLocked(True)


        self.edgeClickLabels = dict()

        def scrolled(d):
            if d>0:
                d=5
            else :
                d=-5
            if self.ndim == 3:
                newSlice = min(self.nSlices-1, self.currentSlice - d)
                newSlice = max(0, newSlice)
                self.currentSlice = newSlice
                with vigra.Timer("scroll"):
                    self.setZ(self.currentSlice)
        self.viewBox.sigScrolled.connect(scrolled)






        self.ctrlWidget = DownCtrl()
        self.ctrlWidget.setSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Minimum)

        self.layout2.insertStretch(1,0)
        self.layout2.addWidget(self.ctrlWidget)




        self.ctrlWidget.modeSelectorComboBox.currentIndexChanged.connect(self.updatePens)
        self.ctrlWidget.brushSizeSlider.sliderMoved.connect(self.changeLineSize)


        self.ctrlWidget.saveLabelsButton.clicked.connect(self.onClickedSaveLabels)
        self.ctrlWidget.loadLabelsButton.clicked.connect(self.onClickedLoadLabels)

        self.ctrlWidget.computeFeaturesButton.clicked.connect(self.onClickedComputeFeatures)
        self.ctrlWidget.saveFeaturesButton.clicked.connect(self.onClickedSaveFeatures)
        self.ctrlWidget.loadFeaturesButton.clicked.connect(self.onClickedLoadFeatures)




        self.ctrlWidget.featureGradientWidget.sigGradientChanged.connect(self.onGradientChanged)


        self.ctrlWidget.trainRfButton.clicked.connect(self.onClickedTrainRf)
        self.ctrlWidget.predictProbsButton.clicked.connect(self.onClickedPredictProbs)
        self.ctrlWidget.predictMcButton.clicked.connect(self.onClickedMulticut)
        self.ctrlWidget.saveRfButton.clicked.connect(self.onClickedSaveRf)
        self.ctrlWidget.loadRfButton.clicked.connect(self.onClickedLoadRf)


        self.layerCtrl.sigFeatureSelected.connect(self.onFeatureSelected)

        self.imgItem = pg.ImageItem(border='w')
        self.viewBox.addItem(self.imgItem)
        self.dataDict = dict()

        self.curves = []
        self.allCurves = None
        self.currentSlice = 0

        self.pathHint = None


        self.currentFeatures = None
        self.featureMinMax = None
        self.currentFi = 0

        self.rf = None
        self.probs = None
        self.nCurves = 0


        self.ScrollLock = threading.Lock()
        self.scrollingIsLocked = False
Exemplo n.º 2
0
def makeFeat(rag, raw, labels, show=True):

    featureExtractor = graphs.gridRagFeatureExtractor(rag, labels)
    featureExtractor.labels = labels
    featureExtractor.graph = rag

    geoFeat = featureExtractor.geometricFeatures()
    topoFeat = featureExtractor.topologicalFeatures()

    features = [geoFeat, topoFeat]

    # ward facs
    wardness = numpy.array([0.0, 0.1, 0.15, 0.25, 0.5, 1.0], dtype="float32")

    accFeat = featureExtractor.accumulatedFeatures(raw)
    features.append(accFeat)

    for s in [2.0, 3.0, 4.0]:
        res = vigra.filters.gaussianGradientMagnitude(raw, s)
        accFeat = featureExtractor.accumulatedFeatures(res)
        features.append(accFeat)

    for s in [2.0, 3.0, 4.0]:
        res = vigra.filters.laplacianOfGaussian(raw, s)
        accFeat = featureExtractor.accumulatedFeatures(res)
        features.append(accFeat)

    for s in [2.0, 3.0, 4.0]:
        res = vigra.gaussianSmoothing(raw, s)
        accFeat = featureExtractor.accumulatedFeatures(res)
        features.append(accFeat)

    #  st ev
    for s in [2.0, 3.0, 4.0]:
        res = stEv(raw, s)
        accFeat = featureExtractor.accumulatedFeatures(res)
        mean = accFeat[:, 0]
        ucm = featureExtractor.ucmTransformFeatures(mean[:, None], wardness)
        features.extend([accFeat, ucm])

        if False:
            for x in range(ucm.shape[1]):
                rag.showEdgeFeature(raw, ucm[:, x])
                vigra.show()

    #  hessian ev
    for s in [1.0, 3.0, 4.0, 6.0, 8.0]:

        img = hessianEv2(raw, s, 2.0)
        # vigra.imshow(img)
        # vigra.show()
        accFeat = featureExtractor.accumulatedFeatures(img)
        mean = accFeat[:, 0]
        ucm = featureExtractor.ucmTransformFeatures(mean[:, None], wardness)

        features.extend([accFeat, ucm])
        if False:
            for x in range(ucm.shape[1]):
                print "x", x
                rag.showEdgeFeature(raw, ucm[:, x])
                vigra.show()
                # break
                #

    features = numpy.concatenate(features, axis=1)
    return features
Exemplo n.º 3
0
    def __init__(self, rag, ndim=3, axis=2):
        self.rag = rag
        self.labels = rag.labels

        self.featureExtractor = graphs.gridRagFeatureExtractor(
            self.rag, self.labels)
        self.featureExtractor.labels = self.labels
        self.featureExtractor.graph = self.rag

        self.shape = self.labels.shape
        self.blocking2d = Blocking2d(self.shape[0:2], (40, 40))
        self.ndim = ndim
        self.axis = axis
        assert len(self.shape) == ndim

        self.nSlices = 1
        if ndim == 3:
            self.nSlices = self.shape[axis]

        self.sliceDict = None

        # qt gui
        self.win = QtGui.QMainWindow()
        self.win.setWindowTitle('pyqtgraph example: ImageItem')
        self.win.show()
        self.win.resize(800, 600)

        self.cw = QtGui.QWidget()
        self.cw.setMouseTracking(True)
        self.win.setCentralWidget(self.cw)
        self.layout = QtGui.QHBoxLayout()
        self.layout2 = QtGui.QVBoxLayout()
        self.cw.setLayout(self.layout)
        self.gv = pg.GraphicsLayoutWidget()

        self.gv.scene()

        self.gv.setSizePolicy(QtGui.QSizePolicy.Preferred,
                              QtGui.QSizePolicy.Expanding)
        self.gv.setMouseTracking(True)

        self.layerCtrl = BvLayerCtrl()
        self.layout.addLayout(self.layout2)
        self.layout.addWidget(self.layerCtrl)

        self.layout2.addWidget(self.gv, 3)
        self.viewBox = BvGridViewBox(blocking2d=self.blocking2d)
        #self.viewBox.setMouseTracking(True)
        self.gv.addItem(self.viewBox)
        self.viewBox.setAspectLocked(True)

        self.edgeClickLabels = dict()

        def scrolled(d):
            if d > 0:
                d = 5
            else:
                d = -5
            if self.ndim == 3:
                newSlice = min(self.nSlices - 1, self.currentSlice - d)
                newSlice = max(0, newSlice)
                self.currentSlice = newSlice
                with vigra.Timer("scroll"):
                    self.setZ(self.currentSlice)

        self.viewBox.sigScrolled.connect(scrolled)

        self.ctrlWidget = DownCtrl()
        self.ctrlWidget.setSizePolicy(QtGui.QSizePolicy.Preferred,
                                      QtGui.QSizePolicy.Minimum)

        self.layout2.insertStretch(1, 0)
        self.layout2.addWidget(self.ctrlWidget)

        self.ctrlWidget.modeSelectorComboBox.currentIndexChanged.connect(
            self.updatePens)
        self.ctrlWidget.brushSizeSlider.sliderMoved.connect(
            self.changeLineSize)

        self.ctrlWidget.saveLabelsButton.clicked.connect(
            self.onClickedSaveLabels)
        self.ctrlWidget.loadLabelsButton.clicked.connect(
            self.onClickedLoadLabels)

        self.ctrlWidget.computeFeaturesButton.clicked.connect(
            self.onClickedComputeFeatures)
        self.ctrlWidget.saveFeaturesButton.clicked.connect(
            self.onClickedSaveFeatures)
        self.ctrlWidget.loadFeaturesButton.clicked.connect(
            self.onClickedLoadFeatures)

        self.ctrlWidget.featureGradientWidget.sigGradientChanged.connect(
            self.onGradientChanged)

        self.ctrlWidget.trainRfButton.clicked.connect(self.onClickedTrainRf)
        self.ctrlWidget.predictProbsButton.clicked.connect(
            self.onClickedPredictProbs)
        self.ctrlWidget.predictMcButton.clicked.connect(self.onClickedMulticut)
        self.ctrlWidget.saveRfButton.clicked.connect(self.onClickedSaveRf)
        self.ctrlWidget.loadRfButton.clicked.connect(self.onClickedLoadRf)

        self.layerCtrl.sigFeatureSelected.connect(self.onFeatureSelected)

        self.imgItem = pg.ImageItem(border='w')
        self.viewBox.addItem(self.imgItem)
        self.dataDict = dict()

        self.curves = []
        self.allCurves = None
        self.currentSlice = 0

        self.pathHint = None

        self.currentFeatures = None
        self.featureMinMax = None
        self.currentFi = 0

        self.rf = None
        self.probs = None
        self.nCurves = 0

        self.ScrollLock = threading.Lock()
        self.scrollingIsLocked = False
Exemplo n.º 4
0
Arquivo: feat.py Projeto: paragt/vigra

# parameter:
imPath = ('holyRegion.h5', 'im')   # input image path
labPath = ('segMaskOnly.h5', 'data')   # labeled image path

# load volume
labels = vigra.impex.readHDF5(*labPath).astype(np.uint32)#[:,:,0:20]
volume = vigra.impex.readHDF5(*imPath)#[:,:,0:20]

volume = volume.astype('float32')

gridGraph = graphs.gridGraph(labels.shape)
rag = graphs.regionAdjacencyGraph(gridGraph, labels)

featureExtractor = graphs.gridRagFeatureExtractor(rag, labels)


accSimpel =  featureExtractor.accumulatedFeaturesSimple



with vigra.Timer("acc raw"):
    miMa = float(volume.min()),float(volume.max()) 
    accFeatRaw = featureExtractor.accumulatedFeatures(volume,miMa[0],miMa[1])

with vigra.Timer("acc grad"): 
    grad = vigra.filters.gaussianGradientMagnitude(volume,1.0)
    accFeatGrad = accSimpel(grad)

Exemplo n.º 5
0
Arquivo: feat.py Projeto: paragt/vigra
from matplotlib.widgets import Slider, Button, RadioButtons

# parameter:
imPath = ('holyRegion.h5', 'im')  # input image path
labPath = ('segMaskOnly.h5', 'data')  # labeled image path

# load volume
labels = vigra.impex.readHDF5(*labPath).astype(np.uint32)  #[:,:,0:20]
volume = vigra.impex.readHDF5(*imPath)  #[:,:,0:20]

volume = volume.astype('float32')

gridGraph = graphs.gridGraph(labels.shape)
rag = graphs.regionAdjacencyGraph(gridGraph, labels)

featureExtractor = graphs.gridRagFeatureExtractor(rag, labels)

accSimpel = featureExtractor.accumulatedFeaturesSimple

with vigra.Timer("acc raw"):
    miMa = float(volume.min()), float(volume.max())
    accFeatRaw = featureExtractor.accumulatedFeatures(volume, miMa[0], miMa[1])

with vigra.Timer("acc grad"):
    grad = vigra.filters.gaussianGradientMagnitude(volume, 1.0)
    accFeatGrad = accSimpel(grad)

with vigra.Timer("acc hessian"):
    grad = vigra.filters.hessianOfGaussianEigenvalues(volume, 1.0)[:, :, 0]
    accFeatHess = accSimpel(grad)
    gui = vigra.graphs.TinyEdgeLabelGui(rag=rag,
Exemplo n.º 6
0
def makeFeat(rag, raw, labels, show=True):

    featureExtractor = graphs.gridRagFeatureExtractor(rag, labels)
    featureExtractor.labels = labels
    featureExtractor.graph = rag

    geoFeat = featureExtractor.geometricFeatures()
    topoFeat = featureExtractor.topologicalFeatures()

    features = [geoFeat, topoFeat]

    # ward facs
    wardness = numpy.array([0.0, 0.1, 0.15, 0.25, 0.5, 1.0], dtype='float32')

    accFeat = featureExtractor.accumulatedFeatures(raw)
    features.append(accFeat)

    for s in [2.0, 3.0, 4.0]:
        res = vigra.filters.gaussianGradientMagnitude(raw, s)
        accFeat = featureExtractor.accumulatedFeatures(res)
        features.append(accFeat)

    for s in [2.0, 3.0, 4.0]:
        res = vigra.filters.laplacianOfGaussian(raw, s)
        accFeat = featureExtractor.accumulatedFeatures(res)
        features.append(accFeat)

    for s in [2.0, 3.0, 4.0]:
        res = vigra.gaussianSmoothing(raw, s)
        accFeat = featureExtractor.accumulatedFeatures(res)
        features.append(accFeat)

    #  st ev
    for s in [2.0, 3.0, 4.0]:
        res = stEv(raw, s)
        accFeat = featureExtractor.accumulatedFeatures(res)
        mean = accFeat[:, 0]
        ucm = featureExtractor.ucmTransformFeatures(mean[:, None], wardness)
        features.extend([accFeat, ucm])

        if False:
            for x in range(ucm.shape[1]):
                rag.showEdgeFeature(raw, ucm[:, x])
                vigra.show()

    #  hessian ev
    for s in [1.0, 3.0, 4.0, 6.0, 8.0]:

        img = hessianEv2(raw, s, 2.0)
        #vigra.imshow(img)
        #vigra.show()
        accFeat = featureExtractor.accumulatedFeatures(img)
        mean = accFeat[:, 0]
        ucm = featureExtractor.ucmTransformFeatures(mean[:, None], wardness)

        features.extend([accFeat, ucm])
        if False:
            for x in range(ucm.shape[1]):
                print "x", x
                rag.showEdgeFeature(raw, ucm[:, x])
                vigra.show()
                #break
                #

    features = numpy.concatenate(features, axis=1)
    return features