Exemplo n.º 1
0
def SDI_RDI_4_VIP(cube, angle_list, verbose, **kwargs):
    from vip_hci import pca
    wsamples = np.linspace(tp.band[0], tp.band[1], tp.w_bins)
    scale_list = tp.band[0]/wsamples
    # cube = np.mean(cube, axis=1)/ap.exposure_time

    SDI_tar = pca.pca(np.mean(cube, axis=1)/ap.exposure_time, angle_list=np.zeros((cube.shape[0])), scale_list=scale_list,
                                mask_center_px=None)
    SDI_ref = pca.pca(np.mean(kwargs['cube_ref'], axis=1)/ap.exposure_time, angle_list=np.zeros((cube.shape[0])), scale_list=scale_list,
                                mask_center_px=None)
    # quicklook_im(SDI)
    return SDI_tar-SDI_ref
Exemplo n.º 2
0
 def fit(self, dataset):
     pcs, cube_h, res, res_d, pf = pca(dataset.cube,
                                       dataset.angles,
                                       ncomp=self.rank,
                                       verbose=False,
                                       full_output=True)
     self.cube_h = cube_h
Exemplo n.º 3
0
def SDI_4_VIP(cube, angle_list, verbose, **kwargs):
    dprint(cube.shape)
    wsamples = np.linspace(tp.band[0], tp.band[1], tp.w_bins)
    scale_list = tp.band[0]/wsamples
    cube = np.mean(cube, axis=1)/ap.exposure_time
    # SDI = phot.SDI_each_exposure(cube, binning=len(cube))[0]
    print(len(angle_list))
    from vip_hci import pca
    SDI = pca.pca(cube, angle_list=np.zeros((len(cube))), scale_list=scale_list,
                                mask_center_px=None)
    # quicklook_im(SDI)
    return SDI
Exemplo n.º 4
0
def do_SDI(datacube, plot=False):
    wsamples = np.linspace(tp.band[0], tp.band[1], tp.w_bins)
    scale_list = tp.band[0] / wsamples
    # print scale_list
    from vip_hci import pca
    dprint((datacube.shape, scale_list.shape))
    fr_pca1 = pca.pca(datacube, angle_list=np.zeros((len(scale_list))), scale_list=scale_list, mask_center_px=None)
    # fr_pca1 = fr_pca1[:,:-4]
    if plot:
        quicklook_im(fr_pca1)
    # dprint(fr_pca1.shape)
    return fr_pca1
def get_frame_snrmap(example_dataset_adi):
    """
    Inject a fake companion into an example cube.

    Parameters
    ----------
    example_dataset_adi : fixture
        Taken automatically from ``conftest.py``.

    Returns
    -------
    frame : VIP Frame
    planet_position : tuple(y, x)

    """
    dsi = copy.copy(example_dataset_adi)
    # we chose a shallow copy, as we will not use any in-place operations
    # (like +=). Using `deepcopy` would be safer, but consume more memory.

    print("producing a final frame...")
    res_frame = pca(dsi.cube, dsi.angles, ncomp=10)
    return res_frame, (63, 63), dsi.fwhm
Exemplo n.º 6
0
def get_frame_snrmap(example_dataset_adi):
    """
    Inject a fake companion into an example cube.

    Parameters
    ----------
    example_dataset_adi : fixture
        Taken automatically from ``conftest.py``.

    Returns
    -------
    frame : VIP Frame
    planet_position : tuple(y, x)

    """
    dsi = copy.copy(example_dataset_adi)
    # we chose a shallow copy, as we will not use any in-place operations
    # (like +=). Using `deepcopy` would be safer, but consume more memory.

    print("producing a final frame...")
    res_frame = pca(dsi.cube, dsi.angles, ncomp=10)
    return res_frame, (63, 63), dsi.fwhm
Exemplo n.º 7
0
    # #              annos= ['0.01s Exp.', '0.01s Dark', '0.1s Dark', '2s Dark', '2s Light', '2s Exp.'],
    # #              vmins=[1,0.1,1,10,0.01,0.001], vmaxs=[100,1,10,100, 0.5,10], logAmp=True)

    # grid([Dmaps[0], Dmaps[1], Dmaps[2], Dmaps[3], Dmap, np.mean(diff_cube,axis=(0,1))],
    #              annos= ['0.1s Exp.', '0.1s Dark', '1s Dark', '3s Dark', '3s DSI', '3s Exp.'],
    #              vmins=[1,0.1,0.1,0.1,0.01,0.01], vmaxs=[1000,10,10,10, 100,100], logAmp=True)

    wsamples = np.linspace(tp.band[0], tp.band[1], tp.w_bins)
    scale_list = tp.band[0] / wsamples

    datacube = np.mean(diff_cube, axis=0) / ap.exposure_time
    # dprint(datacube.shape)
    # loop_frames(datacube)

    SDI = pca.pca(datacube,
                  angle_list=np.zeros((len(diff_cube[0]))),
                  scale_list=scale_list,
                  mask_center_px=None)

    LCcube = np.transpose(diff_cube, (2, 3, 0, 1))
    algo_dict = {'thresh': 0}
    # Lmap = Analysis.stats.get_Dmap(LCcube, algo_dict['thresh'], plot=False, binning=1)
    # Lmap = Analysis.stats.get_Dmap(LCcube, algo_dict['thresh'], plot=False, binning=2)
    # Lmap = Analysis.stats.get_Dmap(LCcube, algo_dict['thresh'], plot=False, binning=5)
    Lmap = Analysis.stats.get_Dmap(LCcube,
                                   algo_dict['thresh'],
                                   plot=False,
                                   binning=50)
    # Lmap = Analysis.stats.get_Dmap(LCcube, algo_dict['thresh'], plot=False, binning=20)
    # rmap = Analysis.stats.get_skew(LCcube)
    BBmap = Analysis.stats.get_LmapBB(LCcube, binning=50, plot=False)
Exemplo n.º 8
0
    def pca_rebinned_cubes_old(self, comps=True):
        maps = []

        if comps:
            for cam in self.metric.cams['comp']:
                dprint(cam.rebinned_cube.shape)
                SDI = pca.pca(cam.rebinned_cube,
                              angle_list=np.zeros(
                                  (cam.rebinned_cube.shape[1])),
                              scale_list=self.scale_list,
                              mask_center_px=None,
                              adimsdi='double',
                              ncomp=self.ncomp,
                              ncomp2=None,
                              collapse='median')
                maps.append(SDI)
            return maps

        else:
            rad_samps, thruputs, noises, conts = [], [], [], []
            for cam in self.metric.cams['star']:
                frame_nofc = pca.pca(cam.rebinned_cube,
                                     angle_list=np.zeros(
                                         (cam.rebinned_cube.shape[1])),
                                     scale_list=self.scale_list,
                                     mask_center_px=None,
                                     adimsdi='double',
                                     ncomp=7,
                                     ncomp2=None,
                                     collapse='median')

                # quick2D(frame_nofc, logZ=False, title='frame_nofc', show=True)

                fwhm = cam.lod if hasattr(cam, 'lod') else mp.lod
                mask = cam.QE_map == 0
                noise_samp, rad_samp = contrcurve.noise_per_annulus(
                    frame_nofc, separation=1, fwhm=fwhm, mask=mask)

                if metric_name == 'array_size':
                    _, vector_radd = contrcurve.noise_per_annulus(
                        frame_nofc,
                        separation=fwhm,
                        fwhm=fwhm,
                        wedge=(0, 360),
                        mask=mask)

                else:
                    vector_radd = self.vector_radd

                # crop the noise and radial sampling measurements the limits of the throughput measurement
                radmin = vector_radd.astype(int).min()
                cutin1 = np.where(rad_samp.astype(int) == radmin)[0][0]
                noise_samp = noise_samp[cutin1:]
                rad_samp = rad_samp[cutin1:]
                radmax = vector_radd.astype(int).max()
                cutin2 = np.where(rad_samp.astype(int) == radmax)[0][0]
                noise_samp = noise_samp[:cutin2 + 1]
                rad_samp = rad_samp[:cutin2 + 1]

                if metric_name == 'array_size':
                    throughput = np.interp(
                        rad_samp * cam.platescale,
                        self.vector_radd.values * self.master_cam.platescale,
                        self.throughput)
                # elif metric_name == 'dark_bright':
                #     throughput = self.manual_throughput(cam.rebinned_cube, frame_nofc)
                else:
                    throughput = self.throughput

                win = min(noise_samp.shape[0] - 2, int(2 * fwhm))
                if win % 2 == 0: win += 1
                noise_samp_sm = savgol_filter(noise_samp,
                                              polyorder=2,
                                              mode='nearest',
                                              window_length=win)

                starphot = 1.1
                sigma = 5
                cont_curve_samp = (
                    (sigma * noise_samp_sm) / throughput) / starphot
                cont_curve_samp[cont_curve_samp < 0] = 1
                cont_curve_samp[cont_curve_samp > 1] = 1

                thruputs.append(throughput)
                noises.append(noise_samp_sm)
                conts.append(cont_curve_samp)
                rad_samp = cam.platescale * rad_samp
                rad_samps.append(rad_samp)
                maps.append(frame_nofc)

            return maps, rad_samps, thruputs, noises, conts
Exemplo n.º 9
0
    def pca_rebinned_cubes(self):
        maps, rad_samps, thruputs, noises, conts = [], [], [], [], []
        cams = self.metric.cams
        colors = [f'C{i}' for i in range(len(self.metric.cams['star']))]
        # fig, axes = plt.subplots(1,6)
        fig, axes = plt.subplots(1, 3)

        dprint(np.shape(axes))
        for i in range(len(cams['comp'])):
            comp_cube = cams['comp'][i].rebinned_cube
            dprint(comp_cube.shape)
            frame_comp = pca.pca(comp_cube,
                                 angle_list=np.zeros((comp_cube.shape[1])),
                                 scale_list=self.scale_list,
                                 mask_center_px=None,
                                 adimsdi='double',
                                 ncomp=self.ncomp,
                                 ncomp2=None,
                                 collapse=self.collapse)
            maps.append(frame_comp)

            nocomp_cube = cams['star'][i].rebinned_cube
            frame_nocomp = pca.pca(nocomp_cube,
                                   angle_list=np.zeros((nocomp_cube.shape[1])),
                                   scale_list=self.scale_list,
                                   mask_center_px=None,
                                   adimsdi='double',
                                   ncomp=self.ncomp,
                                   ncomp2=None,
                                   collapse=self.collapse)

            median_fwhm = cams['star'][i].lod if hasattr(
                cams['star'][i], 'lod') else mp.lod
            median_wave = (self.wsamples[-1] + self.wsamples[0]) / 2
            fwhm = median_fwhm * self.wsamples / median_wave

            mask = cams['star'][i].QE_map == 0

            print('check whether to be using mask here?!')
            noise_samp, rad_samp = contrcurve.noise_per_annulus(
                frame_nocomp, separation=1, fwhm=median_fwhm)
            # mask=mask)

            xy = np.array(
                ap.companion_xy
            ) * 20 * cams['star'][i].sampling / cams['star'][i].platescale
            px, py = (cams['star'][i].array_size[::-1] / 2 - xy).T
            cx, cy = cams['star'][i].array_size[::-1] / 2
            dists = np.sqrt((py - cy)**2 + (px - cx)**2)
            # grid(np.sum(comp_cube, axis=1), title='in comp time collapse', show=False)
            # injected_flux=[contrcurve.aperture_flux(np.sum(comp_cube-nocomp_cube, axis=1)[i], py, px, fwhm[i]/1.5, ap_factor=1) for i in range(comp_cube.shape[0])]
            injected_flux = [
                contrcurve.aperture_flux(np.sum(comp_cube, axis=1)[i],
                                         py,
                                         px,
                                         fwhm[i] / 1.5,
                                         ap_factor=1,
                                         plot=False)
                for i in range(comp_cube.shape[0])
            ]
            # [axes[i+3].plot(dists, influx_wave) for influx_wave in injected_flux]
            injected_flux = np.mean(injected_flux, axis=0)

            # if i ==0 or i == len(self.metric.cams['star'])-1:
            # grid(comp_cube, title='comp', show=False)
            # grid(nocomp_cube, title='no', show=False)
            # grid(comp_cube-nocomp_cube, title='diff', show=False)
            # grid([np.sum(comp_cube, axis=(0,1))], title='sum comp', logZ=True, show=False)
            # grid([np.sum(nocomp_cube, axis=(0,1))], title='sum nocomp', logZ=True, show=False)
            # grid([np.sum(comp_cube, axis=(0,1))-np.sum(nocomp_cube, axis=(0,1))], title='sum then diff', logZ=True, show=False)
            # grid([], title='comp', logZ=True, show=False)
            grid([frame_comp, frame_nocomp, frame_comp - frame_nocomp],
                 title='comp, nocomp, diff',
                 logZ=False,
                 show=False,
                 vlim=(-2e-7, 2e-7))  # vlim=(-2,2))#, vlim=(-2e-7,2e-7))
            grid([
                np.sum(comp_cube, axis=1)[::4],
                np.sum(nocomp_cube, axis=1)[::4]
            ],
                 title='input: comp, no comp',
                 logZ=False,
                 show=False,
                 vlim=(-1e-5, 1e-5))  # vlim=(-2,2))#, vlim=(-1e-5,1e-5))
            grid(np.sum(comp_cube - nocomp_cube, axis=1)[::4],
                 title='diiff input cube',
                 logZ=False,
                 show=False)  #, vlim=(-2,2))
            # grid([(frame_comp-frame_nocomp)/(np.sum(comp_cube-nocomp_cube, axis=(0,1)))], title='throughput', logZ=True, show=False)

            # recovered_flux = contrcurve.aperture_flux((frame_comp - frame_nocomp), py, px, median_fwhm/1.5, ap_factor=1, )
            recovered_flux = contrcurve.aperture_flux((frame_comp),
                                                      py,
                                                      px,
                                                      median_fwhm / 1.5,
                                                      ap_factor=1,
                                                      plot=False)
            # thruput = recovered_flux*1e6 #/ injected_flux
            thruput = recovered_flux / injected_flux

            thruput[np.where(thruput < 0)] = 0

            # plt.figure()
            axes[0].plot(dists, thruput, c=colors[i])
            axes[1].plot(dists, injected_flux, c=colors[i])
            axes[2].plot(dists,
                         recovered_flux,
                         c=colors[i],
                         label=f'{self.metric.vals[i]}')
            axes[2].legend()
            # plt.plot(rad_samp, noise_samp)
            # plt.show()

            win = min(noise_samp.shape[0] - 2, int(2 * median_fwhm))
            if win % 2 == 0: win += 1
            noise_samp_sm = savgol_filter(noise_samp,
                                          polyorder=2,
                                          mode='nearest',
                                          window_length=win)

            # thruput_mean_log = np.log10(thruput + 1e-5)
            # f = InterpolatedUnivariateSpline(dists, thruput_mean_log, k=2)
            # thruput_interp_log = f(rad_samp)
            # thruput_interp = 10 ** thruput_interp_log
            # thruput_interp[thruput_interp <= 0] = np.nan  # 1e-5

            # thruput_interp = np.interp(rad_samp, dists, thruput)

            from scipy.interpolate import interp1d
            # f = interp1d(dists, thruput, fill_value='extrapolate')
            # thruput_interp = f(rad_samp)
            thruput_com = thruput.reshape(4, -1, order='F').mean(axis=0)
            dists_com = dists.reshape(4, -1, order='F').mean(axis=0)

            thruput_com_log = np.log10(thruput_com + 1e-5)
            f = interp1d(dists_com, thruput_com_log, fill_value='extrapolate')
            thruput_interp_log = f(rad_samp)
            thruput_interp = 10**thruput_interp_log

            axes[0].plot(dists_com, thruput_com, marker='o', c=colors[i])

            print(thruput, thruput_interp)
            axes[0].plot(rad_samp, thruput_interp, c=colors[i])

            starphot = 1.1 / 2
            sigma = 5
            cont_curve_samp = (
                (sigma * noise_samp_sm) / thruput_interp) / starphot
            cont_curve_samp[cont_curve_samp < 0] = 1
            cont_curve_samp[cont_curve_samp > 1] = 1

            thruputs.append(thruput_interp)
            noises.append(noise_samp_sm)
            conts.append(cont_curve_samp)
            rad_samp = cams['star'][i].platescale * rad_samp
            rad_samps.append(rad_samp)
            # maps.append(frame_nocomp)
        plt.show(block=True)
        return maps, rad_samps, thruputs, noises, conts
Exemplo n.º 10
0
    Dmap = Analysis.stats.get_Dmap(LCcube, algo_dict['thresh'])
    # DSI
    indep_images([Dmap], vmins=[0.01], vmaxs=[0.5], logAmp=True)

    #SDI +DSI
    iop.hyperFile = iop.datadir + '/noWnoRollHyperWcomp1000cont_Aug_1st.pkl'  #5
    simple_hypercube = read.get_integ_hypercube(plot=False)  #/ap.numframes
    wsamples = np.linspace(tp.band[0], tp.band[1], tp.nwsamp)
    # scale_list = tp.band[0] / wsamples
    scale_list = wsamples / tp.band[0]

    angle_list = np.zeros((tp.nwsamp))
    print np.mean(simple_hypercube, axis=0).shape
    static_psf = pca.pca(np.mean(simple_hypercube, axis=0),
                         angle_list=angle_list,
                         scale_list=scale_list,
                         mask_center_px=None,
                         full_output=True)
    # quicklook_im(pca.pca(np.mean(simple_hypercube,axis=0), angle_list=angle_list, scale_list=scale_list[::-1],
    #               mask_center_px=None))

    quicklook_im(np.sum(simple_hypercube, axis=(0, 1)))
    loop_frames(np.sum(simple_hypercube, axis=0))
    # scale_list = np.linspace(scale_list[-1],scale_list[0],8)
    scale_list = tp.band[1] / wsamples
    # scale_list = scale_list[::-1]
    print scale_list
    # loop_frames(static_psf[0], logAmp=False)
    # loop_frames(static_psf[1], logAmp=False)
    # loop_frames(static_psf[2], logAmp=False)
    # loop_frames(static_psf[3], logAmp=False)
Exemplo n.º 11
0
    def postprocessing(self, do_adi=True, do_adi_contrast=True, do_pca_full=True, do_pca_ann=True, cropped=True,
                       do_snr_map=True, do_snr_map_opt=True, delta_rot=(0.5, 3), mask_IWA=1, overwrite=True, plot=True,
                       verbose=True, debug=False):
        """ 
        For post processing the master cube via median ADI, full frame PCA-ADI, or annular PCA-ADI. Includes constrast
        curves and SNR maps.

        Parameters:
        ***********
        do_adi : bool
            Whether to do a median-ADI processing
        do_adi_contrast : bool
            Whether to compute contrast curve associated to median-ADI
        do_pca_full : bool
            Whether to apply PCA-ADI on full frame
        do_pca_ann : bool, default is False
            Whether to apply annular PCA-ADI (more computer intensive). Only runs if cropped=True
        cropped : bool
            whether the master cube was cropped in pre-processing
        do_snr_map : bool
            whether to compute an SNR map (warning: computer intensive); useful only when point-like features are seen
            in the image
        do_snr_map_opt : bool
            Whether to compute a non-conventional (more realistic) SNR map
        delta_rot : tuple
            Threshold in rotation angle used in pca_annular to include frames in the PCA library (provided in terms of
            FWHM). See description of pca_annular() for more details
        mask_IWA : int, default 1
            Size of the numerical mask that hides the inner part of post-processed images. Provided in terms of fwhm
        overwrite : bool, default True
            whether to overwrite pre-exisiting output files from previous reductions
        plot : bool
            Whether to save plots to the output path (PDF file, print quality)
        verbose : bool
            prints more output when True                 
        debug : bool, default is False
            Saves extra output files
        """

        # make directories if they don't exist
        print("======= Starting post-processing....=======")
        outpath_sub = self.outpath + "sub_npc{}/".format(self.npc)

        if not isdir(outpath_sub):
            os.system("mkdir " + outpath_sub)

        if verbose:
            print('Input path is {}'.format(self.inpath))
            print('Output path is {}'.format(outpath_sub))

        source = self.dataset_dict['source']
        tn_shift = 0.568  # Launhardt et al. 2020, true North offset for NACO

        ADI_cube_name = '{}_master_cube.fits'  # template name for input master cube
        derot_ang_name = 'derot_angles.fits'  # template name for corresponding input derotation angles
        ADI_cube = open_fits(self.inpath + ADI_cube_name.format(source), verbose=verbose)
        derot_angles = open_fits(self.inpath + derot_ang_name, verbose=verbose) + tn_shift

        if do_adi_contrast:
            psfn_name = "master_unsat_psf_norm.fits"  # normalised PSF
            flux_psf_name = "master_unsat-stellarpsf_fluxes.fits"  # flux in a FWHM aperture found in calibration
            psfn = open_fits(self.inpath + psfn_name, verbose=verbose)
            starphot = open_fits(self.inpath + flux_psf_name, verbose=verbose)[1]  # scaled fwhm flux is the second entry

        mask_IWA_px = mask_IWA * self.fwhm
        if verbose:
            print("adopted mask size: {:.0f}".format(mask_IWA_px))

        ann_sz = 3  # if PCA-ADI in a single annulus or in concentric annuli, this is the size of the annulus/i in FWHM
        svd_mode = 'lapack'  # python package used for Singular Value Decomposition for PCA reductions
        n_randsvd = 3  # if svd package is set to 'randsvd' number of times we do PCA rand-svd, before taking the
        # median of all results (there is a risk of significant self-subtraction when just doing it once)
        ref_cube = None  # if any, load here a centered calibrated cube of reference star observations - would then be
        # used for PCA instead of the SCI cube itself

        # TEST number of principal components
        # PCA-FULL
        if do_pca_full:
            test_pcs_full = list(range(1, self.npc + 1))
        # PCA-ANN
        if do_pca_ann:
            test_pcs_ann = list(range(1, self.npc + 1))  # needs a cropped cube

        ######################### Simple ADI ###########################
        if do_adi:
            if not isfile(outpath_sub + 'final_ADI_simple.fits') or overwrite:
                if debug:  # saves the residuals
                    tmp, _, tmp_tmp = median_sub(ADI_cube, derot_angles, fwhm=self.fwhm,
                                                 radius_int=0, asize=ann_sz, delta_rot=delta_rot,
                                                 full_output=debug, verbose=verbose)
                    tmp = mask_circle(tmp, mask_IWA_px)
                    write_fits(outpath_sub + 'TMP_ADI_simple_cube_der.fits', tmp, verbose=verbose)

                # make median combination of the de-rotated cube.
                tmp_tmp = median_sub(ADI_cube, derot_angles, fwhm=self.fwhm,
                                     radius_int=0, asize=ann_sz, delta_rot=delta_rot,
                                     full_output=False, verbose=verbose)
                tmp_tmp = mask_circle(tmp_tmp, mask_IWA_px)  # we mask the IWA
                write_fits(outpath_sub + 'final_ADI_simple.fits', tmp_tmp, verbose=verbose)

            ## SNR map
            if (not isfile(outpath_sub + 'final_ADI_simple_snrmap.fits') or overwrite) and do_snr_map:
                tmp = open_fits(outpath_sub + 'final_ADI_simple.fits', verbose=verbose)
                tmp = mask_circle(tmp, mask_IWA_px)
                tmp_tmp = snrmap(tmp, self.fwhm, nproc=self.nproc, verbose=debug)
                write_fits(outpath_sub + 'final_ADI_simple_snrmap.fits', tmp_tmp, verbose=verbose)

            ## Contrast curve
            if (not isfile(outpath_sub + 'contrast_adi.pdf') or overwrite) and do_adi_contrast:
                _ = contrast_curve(ADI_cube, derot_angles, psfn, self.fwhm, pxscale=self.pixel_scale,
                                   starphot=starphot, algo=median_sub, sigma=5., nbranch=1, theta=0,
                                   inner_rad=1, wedge=(0, 360), student=True, transmission=None,
                                   smooth=True, plot=plot, dpi=300, debug=debug,
                                   save_plot=outpath_sub + 'contrast_adi.pdf', verbose=verbose)
            if verbose:
                print("======= Completed Median-ADI =======")

        ####################### PCA-ADI full ###########################
        if do_pca_full:

            test_pcs_str_list = [str(x) for x in test_pcs_full]
            ntest_pcs = len(test_pcs_full)
            test_pcs_str = "npc" + "-".join(test_pcs_str_list)
            PCA_ADI_cube = ADI_cube.copy()
            tmp_tmp = np.zeros([ntest_pcs, PCA_ADI_cube.shape[1], PCA_ADI_cube.shape[2]])

            if do_snr_map_opt:
                tmp_tmp_tmp_tmp = np.zeros([ntest_pcs, PCA_ADI_cube.shape[1], PCA_ADI_cube.shape[2]])
            for pp, npc in enumerate(test_pcs_full):
                if svd_mode == 'randsvd':
                    tmp_tmp_tmp = np.zeros([n_randsvd, PCA_ADI_cube.shape[1], PCA_ADI_cube.shape[2]])
                    for nr in range(n_randsvd):
                        tmp_tmp_tmp[nr] = pca(PCA_ADI_cube, angle_list=derot_angles, cube_ref=ref_cube,
                                              scale_list=None, ncomp=int(npc),
                                              svd_mode='randsvd', scaling=None, mask_center_px=mask_IWA_px,
                                              delta_rot=delta_rot, fwhm=self.fwhm, collapse='median', check_memory=True,
                                              full_output=False, verbose=verbose)
                    tmp_tmp[pp] = np.median(tmp_tmp_tmp, axis=0)
                else:
                    if not isfile(outpath_sub + 'final_PCA-ADI_full_' + test_pcs_str + '.fits') or overwrite:
                        tmp_tmp[pp] = pca(PCA_ADI_cube, angle_list=derot_angles, cube_ref=ref_cube,
                                          scale_list=None, ncomp=int(npc),
                                          svd_mode=svd_mode, scaling=None, mask_center_px=mask_IWA_px,
                                          delta_rot=delta_rot, fwhm=self.fwhm, collapse='median', check_memory=True,
                                          full_output=False, verbose=verbose)
                    if (not isfile(outpath_sub + 'final_PCA-ADI_full_' +test_pcs_str+'_snrmap_opt.fits') or overwrite) \
                            and do_snr_map_opt:
                        tmp_tmp_tmp_tmp[pp] = pca(PCA_ADI_cube, angle_list=-derot_angles, cube_ref=ref_cube,
                                                  scale_list=None, ncomp=int(npc),
                                                  svd_mode=svd_mode, scaling=None, mask_center_px=mask_IWA_px,
                                                  delta_rot=delta_rot, fwhm=self.fwhm, collapse='median',
                                                  check_memory=True,
                                                  full_output=False, verbose=verbose)
            if not isfile(outpath_sub + 'final_PCA-ADI_full_' + test_pcs_str + '.fits') or overwrite:
                write_fits(outpath_sub + 'final_PCA-ADI_full_' + test_pcs_str + '.fits', tmp_tmp, verbose=verbose)

            if (not isfile(outpath_sub + 'neg_PCA-ADI_full_' + test_pcs_str + '.fits') or overwrite) and do_snr_map_opt:
                write_fits(outpath_sub + 'neg_PCA-ADI_full_' + test_pcs_str + '.fits',
                           tmp_tmp_tmp_tmp, verbose=verbose)
            ### Convolution
            if not isfile(outpath_sub + 'final_PCA-ADI_full_' + test_pcs_str + '_conv.fits') or overwrite:
                tmp = open_fits(outpath_sub + 'final_PCA-ADI_full_' + test_pcs_str + '.fits', verbose=verbose)
                for nn in range(tmp.shape[0]):
                    tmp[nn] = frame_filter_lowpass(tmp[nn], fwhm_size=self.fwhm, gauss_mode='conv')
                write_fits(outpath_sub + 'final_PCA-ADI_full_' + test_pcs_str + '_conv.fits', tmp, verbose=verbose)

            ### SNR map
            if (not isfile(outpath_sub + 'final_PCA-ADI_full_' + test_pcs_str + '_snrmap.fits') or overwrite) \
                    and do_snr_map:
                tmp = open_fits(outpath_sub + 'final_PCA-ADI_full_' + test_pcs_str + '.fits', verbose=verbose)
                for pp in range(ntest_pcs):
                    tmp[pp] = snrmap(tmp[pp], self.fwhm, nproc=self.nproc, verbose=debug)
                    tmp[pp] = mask_circle(tmp[pp], mask_IWA_px)
                write_fits(outpath_sub + 'final_PCA-ADI_full_' + test_pcs_str + '_snrmap.fits', tmp, verbose=verbose)

            ### SNR map optimized
            if (not isfile(outpath_sub + 'final_PCA-ADI_full_' + test_pcs_str + '_snrmap_opt.fits') or overwrite) \
                    and do_snr_map_opt:
                tmp = open_fits(outpath_sub + 'final_PCA-ADI_full_' + test_pcs_str + '.fits', verbose=verbose)
                for pp in range(ntest_pcs):
                    tmp[pp] = snrmap(tmp[pp], self.fwhm, array2=tmp_tmp_tmp_tmp[pp], incl_neg_lobes=False,
                                     nproc=self.nproc, verbose=debug)
                    tmp[pp] = mask_circle(tmp[pp], mask_IWA_px)
                write_fits(outpath_sub + 'final_PCA-ADI_full_' + test_pcs_str + '_snrmap_opt.fits', tmp,
                           verbose=verbose)

            if verbose:
                print("======= Completed PCA Full Frame =======")

        ######################## PCA-ADI annular #######################
        if do_pca_ann:
            if cropped == False:
                raise ValueError('PCA-ADI annular requires a cropped cube!')
            PCA_ADI_cube = ADI_cube.copy()
            del ADI_cube
            test_pcs_str_list = [str(x) for x in test_pcs_ann]
            ntest_pcs = len(test_pcs_ann)
            test_pcs_str = "npc" + "-".join(test_pcs_str_list)

            tmp_tmp = np.zeros([ntest_pcs, PCA_ADI_cube.shape[1], PCA_ADI_cube.shape[2]])
            if debug:
                array_der = np.zeros([ntest_pcs, PCA_ADI_cube.shape[0], PCA_ADI_cube.shape[1], PCA_ADI_cube.shape[2]])
                array_out = np.zeros([ntest_pcs, PCA_ADI_cube.shape[0], PCA_ADI_cube.shape[1], PCA_ADI_cube.shape[2]])
            if do_snr_map_opt:
                tmp_tmp_tmp_tmp = np.zeros([ntest_pcs, PCA_ADI_cube.shape[1], PCA_ADI_cube.shape[2]])

            for pp, npc in enumerate(test_pcs_ann):
                if debug and ((not isfile(outpath_sub + 'final_PCA-ADI_ann_' + test_pcs_str + '_residuals.fits') and
                               not isfile(outpath_sub + 'final_PCA-ADI_ann_' + test_pcs_str + '_residuals-derot.fits'))
                              or overwrite):
                    # saves residuals and median if debug is true and they either dont exist or are to be overwritten
                    array_out[pp], array_der[pp], tmp_tmp[pp] = pca_annular(PCA_ADI_cube, derot_angles,
                                                                            cube_ref=ref_cube, scale_list=None,
                                                                            radius_int=mask_IWA_px, fwhm=self.fwhm,
                                                                            asize=ann_sz * self.fwhm,
                                                                            n_segments=1, delta_rot=delta_rot, ncomp=int(npc),
                                                                            svd_mode=svd_mode, nproc=self.nproc,
                                                                            min_frames_lib=max(npc, 10),
                                                                            max_frames_lib=200, tol=1e-1, scaling=None,
                                                                            imlib='opencv',
                                                                            interpolation='lanczos4', collapse='median',
                                                                            ifs_collapse_range='all',
                                                                            full_output=debug, verbose=verbose)
                else:
                    if not isfile(outpath_sub + 'final_PCA-ADI_ann_' + test_pcs_str + '.fits') or overwrite:
                        tmp_tmp[pp] = pca_annular(PCA_ADI_cube, derot_angles, cube_ref=ref_cube, scale_list=None,
                                                  radius_int=mask_IWA_px, fwhm=self.fwhm, asize=ann_sz * self.fwhm,
                                                  n_segments=1, delta_rot=delta_rot, ncomp=int(npc),
                                                  svd_mode=svd_mode, nproc=self.nproc, min_frames_lib=max(npc, 10),
                                                  max_frames_lib=200, tol=1e-1, scaling=None, imlib='opencv',
                                                  interpolation='lanczos4', collapse='median', ifs_collapse_range='all',
                                                  full_output=False, verbose=verbose)
                if (not isfile(outpath_sub + 'final_PCA-ADI_ann_' + test_pcs_str + '_snrmap_opt.fits') or overwrite) and do_snr_map_opt:
                    tmp_tmp_tmp_tmp[pp] = pca_annular(PCA_ADI_cube, -derot_angles, cube_ref=ref_cube,
                                                      scale_list=None, radius_int=mask_IWA_px, fwhm=self.fwhm,
                                                      asize=ann_sz * self.fwhm, n_segments=1, delta_rot=delta_rot,
                                                      ncomp=int(npc), svd_mode=svd_mode,
                                                      nproc=self.nproc, min_frames_lib=max(npc, 10),
                                                      max_frames_lib=200, tol=1e-1, scaling=None, imlib='opencv',
                                                      interpolation='lanczos4', collapse='median',
                                                      ifs_collapse_range='all', full_output=False, verbose=verbose)
            if not isfile(outpath_sub + 'final_PCA-ADI_ann_' + test_pcs_str + '.fits') or overwrite:
                write_fits(outpath_sub + 'final_PCA-ADI_ann_' + test_pcs_str + '.fits', tmp_tmp, verbose=verbose)
            if debug and ((not isfile(outpath_sub + 'final_PCA-ADI_ann_' + test_pcs_str + '_residuals.fits') and
                           not isfile(outpath_sub + 'final_PCA-ADI_ann_' + test_pcs_str + '_residuals-derot.fits')) or overwrite):
                write_fits(outpath_sub + 'final_PCA-ADI_ann_' + test_pcs_str + '_residuals.fits', array_out, verbose=verbose)
                write_fits(outpath_sub + 'final_PCA-ADI_ann_' + test_pcs_str + '_residuals-derot.fits', array_der, verbose=verbose)

            if (not isfile(outpath_sub + 'final_PCA-ADI_ann_' + test_pcs_str + '_snrmap_opt.fits') or overwrite) and do_snr_map_opt:
                write_fits(outpath_sub + 'neg_PCA-ADI_ann_' + test_pcs_str + '.fits', tmp_tmp_tmp_tmp, verbose=verbose)

            ### Convolution
            if not isfile(outpath_sub + 'final_PCA-ADI_ann_' + test_pcs_str + '_conv.fits') or overwrite:
                tmp = open_fits(outpath_sub + 'final_PCA-ADI_ann_' + test_pcs_str + '.fits', verbose=verbose)
                for nn in range(tmp.shape[0]):
                    tmp[nn] = frame_filter_lowpass(tmp[nn], fwhm_size=self.fwhm, gauss_mode='conv')
                write_fits(outpath_sub + 'final_PCA-ADI_ann_' + test_pcs_str + '_conv.fits', tmp, verbose=verbose)

            ### SNR map
            if (not isfile(
                    outpath_sub + 'final_PCA-ADI_ann_' + test_pcs_str + '_snrmap.fits') or overwrite) and do_snr_map:
                tmp = open_fits(outpath_sub + 'final_PCA-ADI_ann_' + test_pcs_str + '.fits', verbose=verbose)
                for pp in range(ntest_pcs):
                    tmp[pp] = snrmap(tmp[pp], self.fwhm, nproc=self.nproc, verbose=debug)
                    tmp[pp] = mask_circle(tmp[pp], mask_IWA_px)
                write_fits(outpath_sub + 'final_PCA-ADI_ann_' + test_pcs_str + '_snrmap.fits', tmp, verbose=verbose)
            ### SNR map optimized
            if (not isfile(
                    outpath_sub + 'final_PCA-ADI_ann_' + test_pcs_str + '_snrmap_opt.fits') or overwrite) and do_snr_map_opt:
                tmp = open_fits(outpath_sub + 'final_PCA-ADI_ann_' + test_pcs_str + '.fits', verbose=verbose)
                for pp in range(ntest_pcs):
                    tmp[pp] = snrmap(tmp[pp], self.fwhm, plot=plot, array2=tmp_tmp_tmp_tmp[pp], nproc=self.nproc,
                                     verbose=debug)
                    tmp[pp] = mask_circle(tmp[pp], mask_IWA_px)
                write_fits(outpath_sub + 'final_PCA-ADI_ann_' + test_pcs_str + '_snrmap_opt.fits', tmp, verbose=verbose)

            if verbose:
                print("======= Completed PCA Annular =======")
Exemplo n.º 12
0
    # for image in images[3:]:
    #     print np.shape(image)
    #     for imag in image:
    #         quicklook_im(imag, logAmp=False, show=True, vmin= 1)
    #         # print image[::50]

    wsamples = np.linspace(tp.band[0], tp.band[1], tp.nwsamp)
    scale_list = tp.band[0] / wsamples
    print wsamples, tp.band, scale_list
    from Detector.analysis import make_SNR_plot, make_cont_plot
    from vip_hci import pca
    SDIs = []

    for i in range(4):
        SDI = pca.pca(images[i],
                      angle_list=np.zeros((len(images[i]))),
                      scale_list=scale_list[::-1]**-1,
                      mask_center_px=None)
        SDIs.append(SDI)
    SDIs = np.array(SDIs)
    all_curves = np.vstack((images[:, 4], SDIs))
    for i in range(len(all_curves)):
        quicklook_im(all_curves[i], vmin=1)
    # make_cont_plot(SDIs, ['Stack', 'Med', 'Short', 'Ratio'])
    # make_cont_plot(images[:,0], ['Stack', 'Med', 'Short', 'Ratio'])
    make_cont_plot(all_curves, [
        'J-Stack', 'J-Median', 'J-Lucky', 'J-SSD', 'SDI-Stack', 'SDI-Median',
        'SDI-Lucky', 'SDI-SSD'
    ])  # norms = [1,2000,20,1,1,2000,20,1]
    plt.show()
    # mp.obsfile = occultdirs[1] + '/' + 'r0varyObsfile_piston_colors.h5'
    # LCmapFile = os.path.join(mp.rootdir, mp.proc_dir, mp.date, occultdirs[1], 'LCvaryR0_piston_colors.pkl')
Exemplo n.º 13
0
    # plt.show()
    # phot.contrcurve.contrast_curve(cube=hypercube[0], angle_list=np.zeros((len(hypercube[0]))), psf_template=psf_template, fwhm=10, pxscale=0.13, starphot=star_phots, algo=pca.pca, debug=True, **algo_dict)

    # from vip_hci import pca
    # loop_frames(hypercube[:,0])
    # hypercube[:,:,56,124] = 0
    # hypercube[:,:,119,104] = 0
    datacube = np.mean(hypercube, axis=0) / ap.exposure_time
    # datacube = np.transpose(np.transpose(datacube) / np.max(datacube, axis=(1, 2))) / float(tp.nwsamp)
    dprint(np.sum(datacube, axis=(1, 2)))
    loop_frames(datacube)

    dprint(scale_list)

    SDI = pca.pca(datacube,
                  angle_list=np.zeros((len(hypercube[0]))),
                  scale_list=scale_list,
                  mask_center_px=None)

    # dprint(SDI.shape)
    print hypercube.shape
    # SDI[SDI<=0] = 1e-5
    # quicklook_im(np.sum(hypercube, axis=(0,1)), logAmp=True)
    # quicklook_im(SDI, logAmp=True)
    SDI = SDI.reshape(1, SDI.shape[0], SDI.shape[1])

    # wsamples = np.linspace(tp.band[0], tp.band[1], tp.nwsamp)
    # scale_list = wsamples/tp.band[0]
    dprint(scale_list)
    print scale_list, scale_list[-1], 'SL', 1. / scale_list[-1]
    wframe = clipped_zoom(datacube[0], scale_list[0])
    # quicklook_im(wframe)
Exemplo n.º 14
0
    phot.contrcurve.contrast_curve(
        cube=hypercube[:, 0],
        angle_list=-1 * np.arange(0, num_exp * tp.rot_rate * cp.frame_time,
                                  tp.rot_rate * cp.frame_time),
        psf_template=psf_template,
        fwhm=10,
        pxscale=0.13,
        starphot=star_phot,
        algo=pca.pca,
        debug=True)

    # from vip_hci import pca
    # loop_frames(hypercube[:,0])
    ADI = pca.pca(
        hypercube[:, 0],
        angle_list=-1 * np.arange(0, num_exp * tp.rot_rate * cp.frame_time,
                                  tp.rot_rate * cp.frame_time)
    )  #, scale_list=np.ones((len(hypercube[:,0]))), mask_center_px=None)

    quicklook_im(ADI)
    ADI = ADI.reshape(1, 128, 128)

    wsamples = np.linspace(tp.band[0], tp.band[1], tp.nwsamp)
    scale_list = tp.band[0] / wsamples
    print scale_list, scale_list[-1], 'SL', 1. / scale_list[-1]
    wframe = clipped_zoom(hypercube[0, 0], 1. / scale_list[-1])
    quicklook_im(wframe)
    wframe = wframe.reshape(1, 128, 128)
    cube = np.vstack((hypercube[0, [0, -1]], wframe, SDI))
    # cube = np.dstack((hypercube[0,0],wframe,hypercube[0,-1],SDI)).transpose()
    annos = [
def get_reduced_images(ind=1,
                       use_spec=True,
                       plot=False,
                       use_pca=True,
                       verbose=False):
    """ Looks for reduced images file in the home folder and returns if it exists. If you're on the local machine
    and the file has not been transferred it will throw a FileNotFoundError """

    all_photons, star_photons, planet_photons = get_photons(amount=-ind)
    all_tess, star_tess, planet_tess = (
        get_tess(photons)
        for photons in [all_photons, star_photons, planet_photons])

    all_tess = np.transpose(all_tess, axes=(1, 0, 2, 3))
    star_tess = np.transpose(star_tess, axes=(1, 0, 2, 3))
    planet_tess = np.transpose(planet_tess, axes=(1, 0, 2, 3))

    all_raw = np.sum(all_tess, axis=(0, 1))
    star_raw = np.sum(star_tess, axis=(0, 1))
    planet_raw = np.sum(planet_tess, axis=(0, 1))

    sp.numframes = 80
    sp.sample_time = 15

    angle_list = -np.linspace(
        0, sp.numframes * sp.sample_time * config['data']['rot_rate'] / 60,
        all_tess.shape[1])
    print(angle_list, 'angle')

    if use_spec:
        wsamples = np.linspace(ap.wvl_range[0], ap.wvl_range[1],
                               all_tess.shape[0])
        scale_list = wsamples / (ap.wvl_range[1] - ap.wvl_range[0])

        all_pca = pca.pca(all_tess,
                          angle_list=angle_list,
                          scale_list=scale_list,
                          mask_center_px=None,
                          adimsdi='double',
                          ncomp=(None, 1),
                          collapse='sum',
                          verbose=verbose)

        star_pca = pca.pca(star_tess,
                           angle_list=angle_list,
                           scale_list=scale_list,
                           mask_center_px=None,
                           adimsdi='double',
                           ncomp=(None, 1),
                           collapse='sum',
                           verbose=verbose)

        planet_pca = pca.pca(planet_tess,
                             angle_list=angle_list,
                             scale_list=scale_list,
                             mask_center_px=None,
                             adimsdi='double',
                             ncomp=(None, 1),
                             collapse='sum',
                             verbose=verbose)
        # reduced_images = np.array([[all_raw, star_raw, planet_raw], [all_pca, star_pca, planet_pca]])

        all_med = medsub_source.median_sub(all_tess,
                                           angle_list=angle_list,
                                           scale_list=scale_list,
                                           collapse='sum')
        star_med = medsub_source.median_sub(star_tess,
                                            angle_list=angle_list,
                                            scale_list=scale_list,
                                            collapse='sum')
        planet_med = medsub_source.median_sub(planet_tess,
                                              angle_list=angle_list,
                                              scale_list=scale_list,
                                              collapse='sum')

    else:
        pass
        # all_med = medsub_source.median_sub(np.sum(all_tess, axis=0), angle_list=angle_list, collapse='sum')
        # star_med = medsub_source.median_sub(np.sum(star_tess, axis=0), angle_list=angle_list, collapse='sum')
        # planet_med = medsub_source.median_sub(np.sum(planet_tess, axis=0), angle_list=angle_list,
        #                                       collapse='sum')

    all_derot = np.sum(cube_derotate(np.sum(all_tess, axis=0),
                                     angle_list,
                                     imlib='opencv',
                                     interpolation='lanczos4'),
                       axis=0)
    star_derot = np.sum(cube_derotate(np.sum(star_tess, axis=0),
                                      angle_list,
                                      imlib='opencv',
                                      interpolation='lanczos4'),
                        axis=0)
    planet_derot = np.sum(cube_derotate(np.sum(planet_tess, axis=0),
                                        angle_list,
                                        imlib='opencv',
                                        interpolation='lanczos4'),
                          axis=0)

    # all_snr = snrmap(all_pca, fwhm=5, plot=True)
    # star_snr = snrmap(star_pca, fwhm=5, plot=True)
    # planet_snr = snrmap(planet_pca, fwhm=5, plot=True)

    reduced_images = np.array([[all_raw, star_raw, planet_raw],
                               [all_derot, star_derot, planet_derot],
                               [all_pca, star_pca, planet_pca],
                               [all_med, star_med, planet_med]
                               ])  #, )  # [all_snr, star_snr, planet_snr]

    planet_loc = (92, 60)
    fwhm = config['data']['fwhm']
    nproc = 8

    # reduced_images = np.array([[all_med, snrmap(all_med, fwhm, known_sources=planet_loc, nproc=nproc)],
    #                            [all_pca, snrmap(all_pca, fwhm, known_sources=planet_loc,  nproc=nproc)],
    #                            [planet_derot, snrmap(planet_derot, fwhm, known_sources=planet_loc, nproc=nproc)],
    #                            [planet_pca, snrmap(planet_pca, fwhm, known_sources=planet_loc,  nproc=nproc)]])
    # plt.imshow(planet_derot)
    # plt.imshow(snrmap(planet_derot, fwhm, nproc=nproc))
    # plt.show()
    # reduced_images = np.array([[all_raw, star_raw, planet_raw]])

    # grid(reduced_images, logZ=True, vlim=(1,50))  #, vlim=(1,70)
    if plot:
        grid(reduced_images, vlim=(-10, 106))

    return reduced_images