def check_state_vec(state_channel, gpsb, gpse, threshold,
                    condition='greater_equal'):
    if condition == 'greater_equal':
        cond_function = np.greater_equal
    else:
        if condition == 'equal':
            cond_function = np.equal
        else:
            if condition == 'greater':
                cond_function = np.greater
            else:
                if condition == 'less_equal':
                    cond_function = np.less_equal
                else:
                    if condition == 'less':
                        cond_function = np.less
                    else:
                        raise ValueError('Condition must be either '
                                         '"greater_equal", "greater",'
                                         '"equal", "less_equal" or "less"')
    print "Acquiring state vector"
    with vrg.getChannel(state_channel, gpsb, gpse - gpsb) as sttvct:
        print "Evaluating state vector and generating state flag"
        sttflag = (cond_function(sttvct.data, threshold)).astype('int')
        # finding the points where the flag changes state
        u = np.diff(np.concatenate(([0], sttflag, [0])))
        ups = np.where(u == 1, u, 0)
        # shifting the ones (raising state) by one step,
        #  removing length 1 segments
        u = (u - ups + np.roll(ups, 1))[1:]
        starts = np.argwhere(u == 1)
        stops = np.argwhere(u == -1)
        segments = np.hstack((starts, stops))/sttvct.fsample + gpsb
        print len(segments)
    return segments
Exemplo n.º 2
0
def process_channel(ch_p, src, segments):
    step_instances = []
    for step in ch_p.steps.itervalues():
        step_instances.append(step['class'](step))
    brms_buffer = []
    for (j, (gpsb, gpse)) in enumerate(segments):
        with vrg.getChannel(src, ch_p.channel, gpsb, gpse - gpsb) as r_data:
            # Decimate the channel data
            ch_data = decimator_wrapper(r_data, ch_p.ds_freq)
        fft_per_segment = ch_p.compute_n_fft(len(ch_data))
        # Estimate the time vector of the brms samples for this seg
        t_disc = ch_p.compute_time_vector(fft_per_segment, gpsb)
        # Reset the buffers if there is a time discontinuity between
        # this segment and the previous one.
        if t_disc:
            for step in step_instances:
                step.reset()
        # make a function with the spectra as output?
        # il ciclo su fft_per segment lo terrei cmq qui. o no?
        for i in xrange(fft_per_segment):
            freqs, s = sig.welch(
                ch_data[i * ch_p.n_over_points:i * ch_p.n_over_points +
                        ch_p.n_points],
                fs=ch_p.ds_freq,
                window='hanning',
                nperseg=ch_p.n_points)
            pipe = (freqs, s)
            for step in step_instances:
                print "Processing step {} for channel {}".format(
                    step, ch_p.channel)
                pipe = step(pipe)
                # todo:use an hdf5 buffer between segments?probably unnecessary
            brms_buffer.append(pipe[1])
            real_bands = pipe[0]
    return brms_buffer, real_bands
Exemplo n.º 3
0
def process_channel(ch_p, src, segments):
    step_instances = []
    for step in ch_p.steps.itervalues():
        step_instances.append(step['class'](step))
    brms_buffer = []
    step_times = np.zeros(len(step_instances))
    fft_time = 0
    append_time = 0
    for (j, (gpsb, gpse)) in enumerate(segments):
        print 'segment {} of {}'.format(j, len(segments))
        with vrg.getChannel(src, ch_p.channel, gpsb, gpse - gpsb) as r_data:
            # Decimate the channel data
            ch_data = decimator_wrapper(ch_p.ds_freq, r_data)
        fft_per_segment = ch_p.compute_n_fft(len(ch_data))
        print fft_per_segment
        # Estimate the time vector of the brms samples for this seg
        t_disc = ch_p.compute_time_vector(fft_per_segment, gpsb)
        # Reset the buffers if there is a time discontinuity between
        # this segment and the previous one.
        if t_disc:
            for step in step_instances:
                step.reset()
        # make a function with the spectra as output?
        # il ciclo su fft_per segment lo terrei cmq qui. o no?
        for i in xrange(fft_per_segment):
            if i % 100 == 1:
                print "FFt number {} of segment {} of {}".format(
                    i, j, len(segments))
                tot_time = fft_time + append_time + np.sum(step_times)
                perc_time = float(tot_time) / 100
                print "FFT time: {:.2f}%, step time = {:.2f}%, append time" \
                      " = {:.2f}%".format(fft_time/perc_time,
                                          np.sum(step_times)/perc_time,
                                          append_time/perc_time)
            t_0 = time()
            freqs, s = sig.welch(
                ch_data[i * ch_p.n_over_points:i * ch_p.n_over_points +
                        ch_p.n_points],
                fs=ch_p.ds_freq,
                window='hanning',
                nperseg=ch_p.n_points)
            fft_time += time() - t_0
            pipe = (freqs, s)
            for k, step in enumerate(step_instances):
                if i % 100 == 1:
                    print step
                    print "step fraction time:{:.2f}".format(
                        float(step_times[k] * 100) / np.sum(step_times))
                t_0 = time()
                pipe = step(pipe)
                step_times[k] += time() - t_0
                # todo:use an hdf5 buffer between segments?probably unnecessary
            t_0 = time()
            brms_buffer.append(pipe[1])
            real_bands = pipe[0]
            append_time += time() - t_0
    # transpose the buffer in order for it to be used
    brms_buffer = np.array(brms_buffer).T.tolist()
    return brms_buffer, real_bands
Exemplo n.º 4
0
def getRawData(ch, gps, dt):
    """Read data from RAW file:
    ch  = channel name
    gps = gps time
    dt  = duration
    """
    with getChannel('raw', ch, gps, dt) as x:
        return x.data, x.fsample
Exemplo n.º 5
0
def read_virgo_timeseries(source, channel, gstart, gstop_or_dur):
    """quick and dirty function to read virgo data as timeseries"""
    # TODO use gwpy

    from virgotools import getChannel

    with getChannel(source, channel, gstart, gstop_or_dur) as data:
        return TimeSeries(data.data,
                          unit=data.unit,
                          t0=gstart,
                          dt=data.dt,
                          channel=channel)
Exemplo n.º 6
0
def get_spectrum(gps_start, duration):
    chan = 'V1:Hrec_hoft_16384Hz'
    x = getChannel('raw', chan, gps_start, duration)
    Fs = x.fsample

    # Define parameters for FFT
    stride = 5.0  # FFT stride in seconds
    overlap = stride / 2  # overlap in seconds (50%)

    Pxx, freq, t = specgram(x.data,
                            NFFT=int(stride * Fs),
                            Fs=int(Fs),
                            noverlap=int(overlap * Fs))

    Axx = sqrt(Pxx)
    ASD = median(Axx, 1) / sqrt(log(2))

    return ASD, freq
Exemplo n.º 7
0
    'figure.figsize': fig_size,
    'font.family': "serif",
    'font.serif': ["Times"]
})  #,
#                            'xtick.major.pad':'8'})

# Define parameters for FFT
stride = 6.0  # FFT stride in seconds
overlap = 3.0  # overlap in seconds (50%)

#### Grab Hrec data
gps_start = 1180111697
duration = 100

chan = 'V1:Hrec_hoft_16384Hz'
x = getChannel('raw', chan, gps_start, duration)
Fs = x.fsample

# for science segment, get PSD.
# 6-second FFTs, 50% overlap, hann window (default)
Pxx, V1freq, t = specgram(x.data,
                          NFFT=int(stride * Fs),
                          Fs=int(Fs),
                          noverlap=int(overlap * Fs))

Axx = sqrt(Pxx)
V1_ASD_NIWI = median(Axx, 1) / sqrt(log(2))

#### Grab Hrec data
gps_start = 1179865427
duration = 100
Exemplo n.º 8
0
err_chan = 'V1:LSC_DARM_ERR'

# grab data in steps, 50% overlap
step_duration = 50

t_DARM = arange(0, duration, step_duration / 2)
datapoints = zeros(len(t_DARM))

demod_I = zeros(len(t_DARM))
demod_Q = zeros(len(t_DARM))

for i in range(len(t_DARM)):

    gps_start = start_time + i * step_duration / 2
    x = getChannel('raw', err_chan, gps_start, step_duration)
    Fs = x.fsample
    ts = arange(0, duration, 1. / Fs)
    pre_line, t_dec = data_demod(ts,
                                 x.data,
                                 f0,
                                 Fs,
                                 step_duration,
                                 lp=2500.0,
                                 Fs0=10000.0)

    datapoints[i] = median(pre_line)
    print i, gps_start, datapoints[i]

fignum = 0
Exemplo n.º 9
0
def read_virgo_timeseries(source,
                          channel,
                          t0,
                          gstop_or_dur,
                          mask=False,
                          fill_value=np.nan,
                          remote=False):
    """Function to read virgo data as timeseries.
       This should one day be included in gwpy.
   
    Parameters
    ----------
    source : `str`
        Frame file, either a full path to a ffl or gwf file, or an
        abbreviation like 'raw', 'trend', which are looked up in
        the stancard location. If omitted, defaults to 'raw',
        but this default value is deprecated.

    channel : `str`
        Source datastream for these data. 
        If missing, a prefix 'V1:' is added.

    t0 : `~gwpy.time.LIGOTimeGPS`, `float`, `str`
        GPS epoch corresponding to starting time,
        any input parsable by `~gwpy.time.to_gps` is fine

    gstop_or_dur: `~gwpy.time.LIGOTimeGPS`, `float`, `str`
        GPS epoch corresponding to end time,
        any input parsable by `~gwpy.time.to_gps` is fine
        If a `float` < 1e6 is provided, it corresponds to a duration
        in seconds from `t0`.

    mask : `bool`, optional
        If mask is False, missing samples will be replaced
        by fill_value. If it is True, the returned FrVect will
        have an attribute missing, which is a mask vector that
        is zero for missing samples.
        Default : False

    fill_value : `float`, optional
        Value that is used for missing samples if mask is False.
        Default: np.nan

    remote: `bool` optional
        If False, use PythonVirgoTools to parse raw data files.
        If True, use gwpy.TimeSeries.get(), but takes longer.
        Default : False, assuming the script is ran on Virgo server.

    Examples
    --------
    >>> from virgotools import getChannel
 
    Load the data from channel 'INJ_IMC_TRA_DC', from
    Sep 14 2015 09:50:45.391, and a duration of 10s

    >>> x = getChannel('raw', 'INJ_IMC_TRA_DC', 'Sep 14 2015 09:50:45.391', 10)

    That can be simply visualise:

    >>> import matplotlib.pyplot as plt
    >>> plt.plot(x.time, x.data)
    >>> plt.show()

    Same, using 2 GPS times:

    >>> x = getChannel('raw', 'INJ_IMC_TRA_DC', 1126259462.3910, 1126259472.3910)

    """

    # Convert to gps times in seconds
    # Use the Seconds and NanoSeconds instead of ns()
    # Because otherwise one needs to multiply by 1e-9
    # And this can cause rounding approximation
    sec = to_gps(t0).gpsSeconds
    nsec = to_gps(t0).gpsNanoSeconds
    tstart = str(sec) + '.' + str(nsec)
    gstart = float(tstart)

    sec = to_gps(gstop_or_dur).gpsSeconds
    nsec = to_gps(gstop_or_dur).gpsNanoSeconds
    tend = str(sec) + '.' + str(nsec)

    if float(tend) < 1e6:
        gstop = gstart + float(tend)
    else:
        gstop = float(tend)

    # If the script is running on Virgo's server.
    if not remote:
        from virgotools import getChannel
        # Parse Virgo files
        with getChannel(source,
                        channel,
                        gstart,
                        gstop,
                        mask=mask,
                        fill_value=fill_value) as data:
            data = TimeSeries(data.data,
                              unit=data.unit,
                              t0=gstart,
                              dt=data.dt,
                              channel=channel)
    else:
        # If not running the script on Virgo's server. Takes longer
        # Query is working, but crashes when computing q_transform.
        # Data might not be the same format as with PythonVirgoTools.
        # Further checks required.

        if channel[:3] not in ['V1:', 'H1:', 'L1:']:
            print(
                'When accessing the data outside the virgo server, the channel must start with `V1:`, `H1:` or `L1:` '
            )
        data = TimeSeries.get(channel, gstart, gstop)
    return data
Exemplo n.º 10
0
PRCL_phi = array([])
SSFS_phi = array([])
PRCL_UGF = array([])
SSFS_UGF = array([])
DARM_UGF = array([])
MICH_UGF = array([])
B4_112mag = array([])
for i in range(len(seg_stop)):

    if duration[i] < 100:
        continue

    print i, seg_start[i], seg_stop[i], duration[i]

    chan = 'LSC_B2_8MHz_DPHI'
    x = getChannel('rds',chan,seg_start[i],duration[i]-10)
    PRCL_phi = append(PRCL_phi,x.data)

    chan = 'LSC_B4_56MHz_DPHI'
    x = getChannel('rds',chan,seg_start[i],duration[i]-10)
    SSFS_phi = append(SSFS_phi,x.data)

    chan = 'LSC_DARM_UGF'
    x = getChannel('rds',chan,seg_start[i],duration[i]-10)
    DARM_UGF = append(DARM_UGF,x.data)

    chan = 'LSC_SSFS_UGF'
    x = getChannel('rds',chan,seg_start[i],duration[i]-10)
    SSFS_UGF = append(SSFS_UGF,x.data)

    chan = 'LSC_MICH_UGF'
Exemplo n.º 11
0
 def get_channel_data(self, data_source, channel, gpsb, gpse):
     # TODO: extract other stuff from ch i.e. the units?
     with vrg.getChannel(data_source, channel, gpsb, gpse - gpsb) as ch:
         data = decimator_wrapper(self.down_freq, ch)
     return data
Exemplo n.º 12
0
#
# Find segments and save seglist
#
################################################

# C8 start and end times
gps_start = 1178028018

# prior to 17:00 May 5 there were some times when DQ_META_ITF_Mode was not defined, start at 17:00
#gps_start = 1178038817

gps_stop = 1178262018
duration = gps_stop - gps_start

chan = 'DQ_META_ITF_Mode'
x = getChannel('rds', chan, gps_start, duration)
Fs = x.fsample

t = arange(0, duration, 1. / Fs) + gps_start

seg_start = []
seg_stop = []
seg_flag = False

for i in range(len(x.data)):

    # If a segment has just started
    if x.data[i] == 1 and seg_flag == False:
        seg_start.append(t[i])
        seg_flag = True