Exemplo n.º 1
0
    def load_dem(self, dem_file):
        # install using `conda install -c conda-forge rastrio`
        wgs84 = CRS.from_epsg(4326)

        with rs.open(dem_file) as ds:
            top, left, bottom, right = self.bounds
            top, bottom = int(ds.height * top), int(ds.height * bottom)
            left, right = int(ds.width * left), int(ds.width * right)

            xx, yy = np.meshgrid(np.arange(left, right),
                                 np.arange(top, bottom))
            alt = ds.read(1)[top:bottom, left:right]
            lon, lat = ds.xy(yy, xx)
            lon, lat, alt = transform(
                ds.crs, wgs84,
                *map(lambda x: np.array(x).flatten(), (lon, lat, alt)))

        # from https://proj.org/operations/conversions/topocentric.html
        # should work since proj version 8, gives errors here though
        #
        # lc = CRS.from_proj4(('cct -d 3 +proj=pipeline +step +proj=cart +ellps=WGS84 '
        #                     + '+step +proj=topocentric +ellps=WGS84 +lat_0=%f +lon_0=%f +h_0=%f') % self.coord0)

        # now going first to wgs84 and then using pygeodesy, which is very slow but luckily need to do only once
        lc = LocalCartesian(*self.coord0)
        dem = np.zeros((len(lon), 3), dtype=np.float32)
        for i, (lat_, lon_, alt_) in enumerate(zip(lat, lon, alt)):
            xyz = lc.forward(lat_, lon_, alt_)
            dem[i, :] = xyz.xyz

        # transform to correct coordinate frame (now x east, y north, z up => x east, y south, z down)
        dem = tools.q_times_mx(self.w2c.quat.conj(), dem)
        dem = dem.reshape((bottom - top, right - left, 3))
        return dem
Exemplo n.º 2
0
    def ray_intersect_dist(self, obj_idxs, rel_pos_v, rel_rot_q):
        # return distance to objects along -z-axis, supports laser algorithm, put here because efficient

        if False:
            # Should find the nearest intersection with object faces on the camera axis.
            # However, tools.intersections return some error code, seems difficult to debug..

            candidates = []
            ray = np.array([0, 0, -1.0]).reshape((3, 1))
            for i, obj_idx in enumerate(obj_idxs):
                verts = tools.q_times_mx(
                    rel_rot_q[i],
                    self._raw_objs[obj_idx].vertices) + rel_pos_v[i]
                x = tools.intersections(self._raw_objs[obj_idx].faces, verts,
                                        ray)
                candidates.extend(np.abs(x))
            dist = np.min(candidates) if len(candidates) > 0 else None
        else:
            # alternative method: just render and pick center pixel
            _, depth = self.render(obj_idxs,
                                   rel_pos_v,
                                   rel_rot_q, [1, 0, 0],
                                   get_depth=True,
                                   shadows=False,
                                   textures=False)
            dist = depth[depth.shape[0] // 2, depth.shape[1] // 2]
            if dist >= self._frustum_far * 0.99:
                dist = None

        return dist
Exemplo n.º 3
0
def plot_only(path, frame=None):
    import matplotlib.pyplot as plt
    from matplotlib import cm
    from mpl_toolkits.mplot3d import Axes3D
    from visnav.missions.nokia import NokiaSensor

    w2b, b2c = NokiaSensor.w2b, NokiaSensor.b2c
    by_geom, skip = True, 10

    depth_path = os.path.join(path, 'depth')
    geom_path = os.path.join(path, 'geometry')

    for fname in tqdm.tqdm(os.listdir(geom_path if by_geom else depth_path)):
        m = re.search(r'(.*?)\.(d|xyz)\.exr', fname)
        if not m:
            continue

        depth_file = os.path.join(depth_path, m[1] + '.d.exr')
        geom_file = os.path.join(geom_path, m[1] + '.xyz.exr')
        other_exists = os.path.exists(depth_file if by_geom else geom_file)

        if not frame or m[1] == frame:
            # plot depth
            if not by_geom or other_exists:
                plt.figure(1)
                depth = cv2.imread(os.path.join(depth_path, fname),
                                   cv2.IMREAD_UNCHANGED)
                plt.imshow(depth)

            # plot geometry
            if by_geom or other_exists:
                xyz = cv2.imread(geom_file, cv2.IMREAD_UNCHANGED)
                xyz = xyz.reshape((-1, 3))
                x, y, z = tools.q_times_mx(w2b.quat * b2c.quat,
                                           xyz[::skip, :]).T

                f, ax = plt.subplots(1, 1)
                ax.set_aspect('equal')
                ax.set_xlabel("east", fontsize=12)
                ax.set_ylabel("north", fontsize=12)
                line = ax.scatter(x,
                                  y,
                                  s=5,
                                  c=z,
                                  marker='o',
                                  vmin=-5.,
                                  vmax=100.,
                                  cmap=cm.get_cmap('jet'))
                f.colorbar(line)
                tools.hover_annotate(f, ax, line, ['%.1f' % v for v in z])
                f.gca().set_title(m[1])

            plt.show()
Exemplo n.º 4
0
 def _px_ray_axes(self, scaling, dq):  # TODO: use dq
     # construct an array of unit rays, one ray per pixel
     iK = self.cam.inv_intrinsic_camera_mx()
     xx, yy = np.meshgrid(np.linspace(self.cam.width, 0,
                                      int(self.cam.width * scaling)),
                          np.linspace(0, self.cam.height,
                                      int(self.cam.height * scaling)),
                          indexing='xy')
     img_coords = np.vstack(
         (xx.flatten() + 0.5, yy.flatten() + 0.5, np.ones(xx.size)))
     ray_axes = iK.dot(img_coords).T * -1
     ray_axes /= np.linalg.norm(ray_axes, axis=1).reshape((-1, 1))
     return tools.q_times_mx(dq.conj(), ray_axes), xx.shape
Exemplo n.º 5
0
    def project(self, cam, pose):
        # project 3d points to 2d, filter out non-visible
        q_cf = tools.angleaxis_to_q(pose[:3])
        pts3d_cf = tools.q_times_mx(q_cf, self.pts3d) + pose[3:]
        I = pts3d_cf[:, 2] > 0  # in front of cam

        # project without distortion first to remove far away points that would be warped into the image
        uvph = cam.cam_mx.dot(pts3d_cf.T).T
        pts2d = uvph[:, :2] / uvph[:, 2:]
        margin = cam.width * 0.2
        I = np.logical_and.reduce(
            (I, pts2d[:, 0] >= -margin, pts2d[:, 0] < cam.width + margin,
             pts2d[:, 1] >= -margin, pts2d[:, 1] < cam.height + margin))

        if np.sum(I) > 0:
            pts2d = np.atleast_2d(
                cam.project(pts3d_cf[I, :].astype(np.float32)) +
                0.5).astype(int)

            J = np.logical_and.reduce(
                (pts2d[:, 0] >= 0, pts2d[:, 0] < cam.width, pts2d[:, 1] >= 0,
                 pts2d[:, 1] < cam.height))
            pts2d = pts2d[J, :]
            px_vals = self.px_vals[I, :][J, :]

            # calculate suitable blob radius
            median_dist = np.median(np.linalg.norm(pts3d_cf[I, :], axis=1))
            radius = round((self.ground_res / 2 / median_dist) /
                           (1 / cam.cam_mx[0, 0]))  # or ceil?
            diam = radius * 2 + 1
        else:
            diam, pts2d, px_vals = 1, np.zeros((0, 2), dtype=int), np.zeros(
                (0, 3), dtype=int)

        # draw image
        image = np.zeros((cam.height, cam.width, 3), dtype=np.uint8)
        image[pts2d[:, 1], pts2d[:, 0], :] = px_vals
        if diam >= 3:
            image = cv2.dilate(
                image,
                cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (diam, diam)))

        # fill in gaps
        image = image.reshape((-1, 3)).astype(np.float32)
        image[np.all(image == 0, axis=1), :] = np.nan
        image = nan_blur(image.reshape((cam.height, cam.width, 3)), (5, 5),
                         onlynans=True).astype(np.uint8)

        return image
Exemplo n.º 6
0
def main():
    parser = argparse.ArgumentParser(
        description='Estimate depthmaps using COLMAP')
    parser.add_argument('-i',
                        '--kapture',
                        required=True,
                        help='input path to kapture data root directory')
    parser.add_argument('-s',
                        '--sensor',
                        default='cam',
                        help='input kapture image sensor name')
    parser.add_argument('-nl',
                        '--keypoint',
                        default='gftt',
                        help='input kapture keypoint type name')
    parser.add_argument('-p', '--path', required=True, help='output base path')
    parser.add_argument('-t',
                        '--txt',
                        default='txt',
                        help='output text folder name')
    parser.add_argument('-d',
                        '--dense',
                        default='dense',
                        help='output dense folder name')
    parser.add_argument('-e', '--export', help='export depth maps here')
    parser.add_argument(
        '--export-bits',
        type=int,
        default=32,
        choices=(16, 24, 32),
        help=
        'Export depth and geometry using float16/24/32 exr-files (default 32). Safe range of '
        'values can be calculated using (2**ceil(log(trg_prec * 2**x)/log(2)) - 1), where '
        'trg_prec is the target precision and x is the length of the significand '
        '(10, 15, 23 for 16, 24, 32 bit floats, respectively). '
        'E.g., if ground resolution at 100m for fl=2315px is 0.043m (100/2315), the safe range '
        'for different choices would be [-63, 63], [-2047, 2047], and [-524287, 524287].'
    )
    parser.add_argument('-c', '--cmd', help='path to colmap command')
    parser.add_argument(
        '--composite-cmd',
        help=
        'composite cmd to invoke colmap command, e.g. "singularity exec colmap.sif colmap"'
    )
    parser.add_argument(
        '--gpu',
        default='0',
        help='gpu indices to use, e.g. 0 (default) or 0,0,0,0 or 0,1,2')
    parser.add_argument('--mem',
                        default=32,
                        type=int,
                        help='max mem usage in GB ')
    parser.add_argument('--min-depth',
                        type=float,
                        default=10,
                        help='min depth for depth map estimation')
    parser.add_argument('--max-depth',
                        type=float,
                        default=200,
                        help='max depth for depth map estimation')
    parser.add_argument(
        '--win-rad',
        type=int,
        default=5,
        help='window radius for colmap depth map estimation (default=5)')
    parser.add_argument(
        '--win-step',
        type=int,
        default=1,
        help='window step size for colmap depth map estimation (default=1)')

    parser.add_argument('--filter-min-ncc',
                        type=float,
                        default=0.1,
                        help='--PatchMatchStereo.filter_min_ncc  arg (=0.1)')
    parser.add_argument(
        '--filter-min-triangulation-angle',
        type=float,
        default=3.0,
        help='--PatchMatchStereo.filter_min_triangulation_angle  arg (=3.0)')
    parser.add_argument(
        '--filter-min-num-consistent',
        type=int,
        default=2,
        help='--PatchMatchStereo.filter_min_num_consistent  arg (=2)')
    parser.add_argument(
        '--filter-geom-consistency-max-cost',
        type=float,
        default=1.0,
        help='--PatchMatchStereo.filter_geom_consistency_max_cost  arg (=1.0)')

    parser.add_argument('--plot-only',
                        action='store_true',
                        help='plot only export results')
    parser.add_argument('--skip-import',
                        action='store_true',
                        help='skip importing kapture to colmap format')
    parser.add_argument('--skip-depth-est',
                        action='store_true',
                        help='skip depth map estimation')
    parser.add_argument('--skip-export',
                        action='store_true',
                        help='skip exporting depth maps to exr format')
    parser.add_argument('--skip-depth-filter',
                        action='store_true',
                        help='skip extra filter scheme for depth map')

    parser.add_argument(
        '--plot',
        help='during export, only process and plot the frame given here')

    args = parser.parse_args()
    txt_rec = os.path.join(args.path, args.txt)
    db_path = os.path.join(args.path, 'colmap.db')
    img_path = get_record_fullpath(args.kapture)
    dense_path = os.path.join(args.path, args.dense)
    os.makedirs(os.path.join(dense_path, 'images', args.sensor), exist_ok=True)
    logging.basicConfig(level=logging.INFO)

    if not args.export:
        args.export = os.path.join(args.kapture, 'reconstruction')

    if args.plot_only:
        plot_only(args.export, args.plot)
        exit()

    if args.composite_cmd:
        cmd = args.composite_cmd.split(' ')
    else:
        assert args.cmd, 'either --cmd or --composite-cmd argument needs to be given'
        cmd = [args.cmd]

    if not args.skip_import:
        export_colmap(args.kapture,
                      db_path,
                      txt_rec,
                      keypoints_type=args.keypoint,
                      force_overwrite_existing=True)
        image_undistorter_args = [
            "image_undistorter",
            "--image_path",
            img_path,
            "--input_path",
            txt_rec,
            "--output_path",
            dense_path,
            "--blank_pixels",
            "1",
        ]
        exec_cmd(cmd + image_undistorter_args)

        for f in ('consistency_graphs', 'depth_maps', 'normal_maps'):
            os.makedirs(os.path.join(dense_path, 'stereo', f, args.sensor),
                        exist_ok=True)

    if not args.skip_depth_est:
        patch_match_stereo_args = [
            "patch_match_stereo",
            "--workspace_path",
            dense_path,
            "--PatchMatchStereo.depth_min",
            str(args.min_depth),
            "--PatchMatchStereo.depth_max",
            str(args.max_depth),
            "--PatchMatchStereo.window_radius",
            str(args.win_rad),
            "--PatchMatchStereo.window_step",
            str(args.win_step),
            "--PatchMatchStereo.gpu_index",
            args.gpu,
            "--PatchMatchStereo.cache_size",
            str(args.mem),
            "--PatchMatchStereo.filter_min_ncc",
            str(args.filter_min_ncc),
            "--PatchMatchStereo.filter_min_triangulation_angle",
            str(args.filter_min_triangulation_angle),
            "--PatchMatchStereo.filter_min_num_consistent",
            str(args.filter_min_num_consistent),
            "--PatchMatchStereo.filter_geom_consistency_max_cost",
            str(args.filter_geom_consistency_max_cost),
        ]
        exec_cmd(cmd + patch_match_stereo_args)

    if not args.skip_export:
        depth_path = os.path.join(dense_path, 'stereo', 'depth_maps',
                                  args.sensor)
        os.makedirs(os.path.join(args.export, 'depth'), exist_ok=True)
        os.makedirs(os.path.join(args.export, 'geometry'), exist_ok=True)
        kapt = kapture_from_dir(args.kapture)
        sensor_id, width, height, fl_x, fl_y, pp_x, pp_y, *dist_coefs = get_cam_params(
            kapt, args.sensor)
        file2id = {fn[sensor_id]: id for id, fn in kapt.records_camera.items()}

        if args.export_bits == 16:
            exr_params_d = exr_params_xyz = (cv2.IMWRITE_EXR_TYPE,
                                             cv2.IMWRITE_EXR_TYPE_HALF)
        else:
            exr_params_d = exr_params_xyz = (cv2.IMWRITE_EXR_TYPE,
                                             cv2.IMWRITE_EXR_TYPE_FLOAT)
            if args.export_bits == 24:
                if hasattr(cv2, 'IMWRITE_EXR_COMPRESSION'):
                    # supported in OpenCV 4, see descriptions at
                    #   https://rainboxlab.org/downloads/documents/EXR_Data_Compression.pdf
                    #   or https://www.openexr.com/documentation/TechnicalIntroduction.pdf
                    exr_params_d += (cv2.IMWRITE_EXR_COMPRESSION,
                                     cv2.IMWRITE_EXR_COMPRESSION_PXR24
                                     )  # zip 24bit floats
                    exr_params_xyz += (cv2.IMWRITE_EXR_COMPRESSION,
                                       cv2.IMWRITE_EXR_COMPRESSION_PXR24)
                else:
                    logging.warning(
                        'This version of OpenCV does not support PXR24 compression, defaulting to float32'
                    )
            elif hasattr(cv2, 'IMWRITE_EXR_COMPRESSION'):
                exr_params_d += (cv2.IMWRITE_EXR_COMPRESSION,
                                 cv2.IMWRITE_EXR_COMPRESSION_ZIP
                                 )  # zip 32bit floats
                exr_params_xyz += (cv2.IMWRITE_EXR_COMPRESSION,
                                   cv2.IMWRITE_EXR_COMPRESSION_ZIP)

        logging.info('Exporting geometric depth maps in EXR format...')
        for fname in tqdm.tqdm(os.listdir(depth_path), mininterval=3):
            m = re.search(r'(.*?)(\.jpg|\.png|\.jpeg)?\.geometric\.bin', fname)
            if m and (not args.plot or m[1] == args.plot):
                depth0 = read_colmap_array(os.path.join(depth_path, fname))
                depth0[depth0 <= args.min_depth] = np.nan
                depth0[depth0 >= args.max_depth] = np.nan
                depth = depth0 if args.skip_depth_filter else filter_depth(
                    depth0, args)

                if width != depth.shape[1] or height != depth.shape[0]:
                    logging.warning(
                        'Depth map for image %s is different size than the camera resolution %s vs %s'
                        % (m[1] + m[2], depth.shape, (height, width)))

                outfile = os.path.join(args.export, 'depth', m[1] + '.d.exr')
                cv2.imwrite(outfile, depth, exr_params_d)

                frame_id = file2id.get(
                    args.sensor + '/' + m[1] + m[2],
                    file2id.get(args.sensor + '\\' + m[1] + m[2], None))
                cf_cam_world_v, cf_cam_world_q = kapt.trajectories[frame_id][
                    sensor_id].t, kapt.trajectories[frame_id][sensor_id].r
                cf_world_cam = -Pose(cf_cam_world_v, cf_cam_world_q)

                px_u = cam_px_u(depth.shape[1], depth.shape[0], fl_x, fl_y,
                                pp_x, pp_y)

                # the depth is actually the z-component, not the distance from the camera to the surface
                dist = depth.flatten() / px_u[:, 2]

                px_u = tools.q_times_mx(cf_world_cam.quat,
                                        px_u * dist[:, None])
                xyz = px_u.reshape(depth.shape +
                                   (3, )) + cf_world_cam.loc.reshape((1, 1, 3))

                outfile = os.path.join(args.export, 'geometry',
                                       m[1] + '.xyz.exr')
                cv2.imwrite(outfile, xyz.astype(np.float32), exr_params_xyz)

                if args.plot:
                    _, depth2 = filter_depth(depth0, args, return_interm=True)
                    xyz = xyz.reshape((-1, 3))

                    import matplotlib.pyplot as plt
                    from mpl_toolkits.mplot3d import Axes3D

                    plt.figure(1)
                    plt.imshow(depth0)

                    plt.figure(2)
                    plt.imshow(depth2)

                    plt.figure(3)
                    plt.imshow(depth)

                    f = plt.figure(4)
                    a = f.add_subplot(111, projection='3d')
                    a.set_xlabel('x')
                    a.set_ylabel('y')
                    a.set_zlabel('z')
                    a.plot(xyz[::5, 0], xyz[::5, 1], xyz[::5, 2], '.')

                    plt.show()
Exemplo n.º 7
0
            # print('est ypr: %s' % ' '.join('%.1fdeg' % math.degrees(a) for a in tools.q_to_ypr(res_q)))
            print('rea ypr: %s' % ' '.join('%.1fdeg' % math.degrees(a)
                                           for a in tools.q_to_ypr(ast_q)))
            print('est ypr: %s' % ' '.join('%.1fdeg' % math.degrees(a)
                                           for a in tools.q_to_ypr(est_q)))
            # print('err ypr: %s' % ' '.join('%.2fdeg' % math.degrees(a) for a in tools.q_to_ypr(err_q)))
            print('err angle: %.2fdeg' % math.degrees(err_angle))
            # print('rea v: %s' % ' '.join('%.1fm' % a for a in cam_v*1000))
            # print('est v: %s' % ' '.join('%.1fm' % a for a in res_v*1000))
            print('rea v: %s' % ' '.join('%.1fm' % a for a in ast_v * 1000))
            print('est v: %s' % ' '.join('%.1fm' % a for a in est_v * 1000))
            # print('err v: %s' % ' '.join('%.2fm' % a for a in err_v*1000))
            print('err norm: %.2fm\n' % np.linalg.norm(err_v * 1000))

            if False and len(odo.state.map3d) > 0:
                pts3d = tools.q_times_mx(SystemModel.cv2gl_q.conj(),
                                         odo.get_3d_map_pts())
                tools.plot_vectors(pts3d)
                errs = tools.point_cloud_vs_model_err(pts3d, obj)
                print('\n3d map err mean=%.3f, sd=%.3f, n=%d' % (
                    np.mean(errs),
                    np.std(errs),
                    len(odo.state.map3d),
                ))

            # print('\n')
        else:
            print('no solution\n')

        #cv2.imshow('image', image)
        #cv2.waitKey()
Exemplo n.º 8
0
def replay_keyframes(cam: Camera,
                     keyframes: List[Frame] = None,
                     map3d: List[Keypoint] = None,
                     file: str = 'results.pickle'):
    import cv2

    if keyframes is None:
        with open(file, 'rb') as fh:
            keyframes, map3d, frame_names, meta_names, ground_truth, *ba_errs = pickle.load(
                fh)
            ba_errs = ba_errs[0] if len(ba_errs) else None

    if isinstance(keyframes[0], Frame):
        keyframes = [
            dict(pose=kf.pose,
                 meas=kf.measure,
                 time=kf.time,
                 id=kf.id,
                 kps_uv=kf.kps_uv,
                 image=kf.image) for kf in keyframes
        ]

    kp_size, kp_color = 5, (200, 0, 0)
    kp_ids = set(kf.id for kf in map3d
                 if not kf.bad_qlt and kf.inlier_count > 2
                 and kf.inlier_count / kf.total_count > 0.2)
    map3d = {kf.id: kf for kf in map3d}
    img_scale = 0.5

    for kf in keyframes:
        if kf['pose'] is None or kf['pose'].post is None:
            continue

        obs_ids = list(kp_ids.intersection(kf['kps_uv'].keys()))
        if len(obs_ids) == 0:
            continue

        image = kf['image'].copy() if 'image' in kf else np.zeros(
            (int(cam.height * img_scale), int(cam.width * img_scale), 3),
            dtype=np.uint8)
        if len(image.shape) == 2 or image.shape[2] == 1:
            image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR)

        p_pts2d = (np.array([kf['kps_uv'][id]
                             for id in obs_ids]) + 0.5).astype(int).squeeze()
        p_pts3d = np.array([map3d[id].pt3d for id in obs_ids])

        pts3d_cf = tools.q_times_mx(kf['pose'].post.quat,
                                    p_pts3d) + kf['pose'].post.loc
        pts2d_proj = (cam.project(pts3d_cf.astype(np.float32)) * img_scale +
                      0.5).astype(int)

        for (x, y), (xp, yp) in zip(p_pts2d, pts2d_proj):
            image = cv2.circle(image, (x, y), kp_size, kp_color,
                               1)  # negative thickness => filled circle
            image = cv2.rectangle(image, (xp - 2, yp - 2), (xp + 2, yp + 2),
                                  kp_color, 1)
            image = cv2.line(image, (xp, yp), (x, y), kp_color, 1)

        cv2.imshow('keypoint reprojection', image)
        cv2.waitKey()
Exemplo n.º 9
0
    def flux_density(cam_q,
                     cam,
                     mask=None,
                     mag_cutoff=MAG_CUTOFF,
                     array=False,
                     undistorted=False,
                     order_by=None):
        """
        plots stars based on Tycho-2 database, gives out photon count per unit area given exposure time in seconds,
        cam_q is a quaternion in ICRS coord frame, x_fov and y_fov in degrees
        """

        # calculate query conditions for star ra and dec
        cam_dec, cam_ra, _ = tools.q_to_ypr(
            cam_q)  # camera boresight in ICRS coords
        d = np.linalg.norm((cam.x_fov, cam.y_fov)) / 2

        min_dec, max_dec = math.degrees(cam_dec) - d, math.degrees(cam_dec) + d
        dec_cond = '(dec BETWEEN %s AND %s)' % (min_dec, max_dec)

        # goes over the pole to the other side of the sphere, easy solution => ignore limit on ra
        skip_ra_cond = min_dec < -90 or max_dec > 90

        if skip_ra_cond:
            ra_cond = '1'
        else:
            min_ra, max_ra = math.degrees(cam_ra) - d, math.degrees(cam_ra) + d
            if min_ra < 0:
                ra_cond = '(ra < %s OR ra > %s)' % (max_ra,
                                                    (min_ra + 360) % 360)
            elif max_ra > 360:
                ra_cond = '(ra > %s OR ra < %s)' % (min_ra, max_ra % 360)
            else:
                ra_cond = '(ra BETWEEN %s AND %s)' % (min_ra, max_ra)

        conn = sqlite3.connect(Stars.STARDB)
        cursor = conn.cursor()
        # the magnitudes for tycho id xxxx-xxxxx-2 entries are bad as they are most likely taken from hip catalog that bundles all .*-(\d)
        results = cursor.execute(
            """
            SELECT x, y, z, mag_v""" +
            (", mag_b, t_eff, fe_h, log_g, dec, ra, id" if array else "") + """
            FROM deep_sky_objects
            WHERE """ + ("tycho like '%-1' AND " if Stars.STARDB ==
                         Stars.STARDB_TYC else "") + "mag_v < " +
            str(mag_cutoff) + " AND " + dec_cond + " AND " + ra_cond +
            ((" ORDER BY %s ASC" % order_by) if order_by is not None else ''))
        stars = np.array(results.fetchall())
        conn.close()

        flux_density = ([], None) if array else np.zeros(
            (cam.height, cam.width), dtype=np.float32)
        if len(stars) == 0:
            return flux_density

        stars[:, 0:3] = tools.q_times_mx(
            SystemModel.sc2gl_q.conj() * cam_q.conj(), stars[:, 0:3])
        stars_ixy_ = cam.calc_img_R(stars[:, 0:3], undistorted=undistorted)
        stars_ixy = np.round(stars_ixy_.astype(np.float)).astype(np.int)
        I = np.logical_and.reduce(
            (np.all(stars_ixy >= 0, axis=1), stars_ixy[:, 0] <= cam.width - 1,
             stars_ixy[:, 1] <= cam.height - 1))
        if array:
            cols = ('ix', 'iy', 'x', 'y', 'z', 'mag_v', 'mag_b', 't_eff',
                    'fe_h', 'log_g', 'dec', 'ra', 'id')
            return (np.hstack((stars_ixy_[I, :], stars[I, :])),
                    dict(zip(cols, range(len(cols)))))

        stars_ixy = stars_ixy[I, :]
        flux_density_per_star = Stars.magnitude_to_spectral_flux_density(
            stars[I, 3])
        for i, f in enumerate(flux_density_per_star):
            flux_density[stars_ixy[i, 1], stars_ixy[i, 0]] += f

        if mask is not None:
            flux_density[np.logical_not(mask)] = 0

        if True:
            # assume every star is like our sun, convert to total flux density [W/m2]
            solar_constant = 1360.8
            # sun magnitude from http://mips.as.arizona.edu/~cnaw/sun.html
            sun_flux_density = Stars.magnitude_to_spectral_flux_density(
                Stars.SUN_MAG_V)
            flux_density = flux_density * (solar_constant / sun_flux_density)

        return flux_density
Exemplo n.º 10
0
def apply_transf(transf, x):
    """ apply transformation calculated earlier with calc_transf """
    tr, q = transf
    return tools.q_times_mx(q, x - tr)
Exemplo n.º 11
0
def main(mission_sc=False, simple=False):
    mpl.rcParams['font.size'] = FONT_SIZE
    mpl.rcParams['lines.markersize'] = MARKER_SIZE
    mpl.rcParams['lines.linewidth'] = LINE_WIDTH

    try:
        switches = {'--video'}
        args = sys.argv[1:]
        video = '--video' in args
        if video:
            args = [a for a in args if a not in switches]
        filename = args[0]
        span = tuple(map(int, args[1].split(':'))) if len(args) > 1 else None
        is_4km = '4km' in filename
        is_vo = '-vo-' in filename
        is_nac = '-nac-' in filename or '-1n-' in filename or '-2n-' in filename
    except:
        print('USAGE: %s <logfile>' % sys.argv[0])
        quit()

    raw = []
    with open(filename, newline='') as fh:
        reader = csv.reader(fh, delimiter='\t', quotechar='"')
        for i, row in enumerate(reader):
            if i == 0 and mission_sc:
                continue
            raw.append(row)
    data = np.array(raw).astype('double')
    if span is not None:
        data = data[span[0]:span[1], :]

    if mission_sc:
        plot_mission_sc(data, format=3 if 'results' in filename else 2)
        quit()

    use_d2 = '-d2-' in filename.lower() or '-2n-' in filename.lower(
    ) or '-2w-' in filename.lower()
    id = filename.split('\\')[-1].split('-')[0]

    # time (1)
    time = data[:, 0] / 3600

    # real D1 pose (7)
    d1_loc = data[:, 1:4]
    d1_q = data[:, 4:8]

    # real D2 pose (7)          15
    d2_loc = data[:, 8:11]
    d2_q = data[:, 11:15]

    trg_loc = d2_loc if use_d2 else d1_loc
    trg_q = quaternion.as_quat_array(d2_q if use_d2 else d1_q)

    # real s/c pose (7)
    sc_loc = data[:, 15:18]
    sc_q = quaternion.as_quat_array(data[:, 18:22])

    # init s/c pose (7)         29
    isc_loc = data[:, 22:25]
    isc_q = data[:, 25:29]

    # landmark algo loc (3)
    # TODO: check that sc_q works, seems that static
    spl_loc = trg_loc - tools.q_times_mx(sc_q, data[:, 29:32])

    # landmark algo loc ok (1)  33
    spl_loc_ok = data[:, 32:33]
    spl_loc[np.logical_not(spl_loc_ok).flatten(), :] = np.nan

    # landmark algo ori (4)
    spl_q = data[:, 33:37]

    # landmark algo ori ok (1)  38
    spl_q_ok = data[:, 37:38]
    spl_q[np.logical_not(spl_q_ok).flatten(), :] = np.nan

    # laser algo loc (3)
    lsr_loc = trg_loc - tools.q_times_mx(sc_q, data[:, 38:41])

    # laser algo loc ok (1)     42
    lsr_loc_ok = data[:, 41:42]
    lsr_loc[np.logical_not(lsr_loc_ok).flatten(), :] = np.nan

    # nav filter loc (3)
    flt_loc = data[:, 42:45] if True else np.full_like(spl_loc, np.nan)

    # measurement log likelihood (1)
    meas_ll = data[:, 45:46]

    # delta-v spent (1)
    cum_delta_v = data[:, 46:47]

    # vo loc (3)
    vo_loc = trg_loc - tools.q_times_mx(sc_q, data[:, 47:50])

    # vo ori (4)
    vo_q = data[:, 50:54]

    # vo meas sds (6)
    vo_meas_sds = data[:, 54:60]

    # vo bias sds (6)
    vo_bias_sds = data[:, 60:66]

    # vo scale drift sd (1)
    vo_bias_sds = data[:, 66:67]

    # vo ok
    vo_ok = data[:, 67:68]

    # phase angle
    phase_angle = data[:, 68:69]

    # vo scale (1)
    vo_scale = data[:, 69:70]

    # cnt location (3)
    cnt_loc = trg_loc - tools.q_times_mx(
        sc_q, data[:, 70:73]) if data.shape[1] >= 73 else np.full_like(
            spl_loc, np.nan)

    # sun-sc vect
    sun_v = data[:, 73:76] if data.shape[1] >= 76 else None

    # s/c-target distance
    distance = np.linalg.norm(sc_loc - trg_loc, axis=1)

    has_spl = not np.all(np.isnan(spl_loc))
    has_lsr = not np.all(np.isnan(lsr_loc))
    has_vo = not np.all(np.isnan(vo_loc))  # and False
    has_cnt = not np.all(np.isnan(cnt_loc))
    has_flt = False

    if use_d2:
        sun_v = sun_v if sun_v is not None else {
            'id2': np.array([-0.3067, -0.9427, -0.1315]),
            'id4': np.array([-0.5252, -0.8379, -0.1485]),
            'id5': np.array([0, -1, 0]),
        }[id]
        is_d2_ecl = d2_eclipses(sun_v, d1_loc, d2_loc)
        d2_ecl = get_intervals(time, is_d2_ecl)

        is_d1_bg, is_d1_fg = d2_when_d1_in_view(sc_loc, sc_q, d1_loc, d2_loc)
        d1_bg, d1_fg = get_intervals(time,
                                     is_d1_bg), get_intervals(time, is_d1_fg)

    if not video:
        cnt_max_dist = {
            True: {  # is_nac
                True: 1300,  # - use_d2
                False: 5800,  # - not use_d2
            },
            False: {  # not is_nac
                True: 225,  # - use_d2
                False: 1050,  # - not use_d2
            },
        }[is_nac][use_d2]
        cnt_loc[phase_angle.flatten() > 100 / 180 * np.pi, :] = np.nan
        cnt_loc[distance.flatten() < cnt_max_dist, :] = np.nan
        spl_loc[phase_angle.flatten() > 135 / 180 * np.pi, :] = np.nan

    incl_for_stats = (phase_angle < 100 / 180 *
                      np.pi).flatten()  # phase angle less than 100 deg
    if use_d2:
        incl_for_stats = np.logical_and.reduce((
            incl_for_stats,
            np.logical_not(is_d1_fg),
            np.logical_not(is_d2_ecl),
        ))

    # calculate transformation to synodic frame, apply
    tr_sf = calc_transf(d1_loc, d2_loc)

    # for error calculation and plots
    tr_stf = calc_transf(sc_loc, d2_loc if use_d2 else d1_loc)
    c_lab = ('distance', 'along orbit', 'above orbit')

    if has_vo:
        vo_loc, vo_scale, vo_loc_bias, nkf_idxs, is_mm = vo_data_prep(
            vo_loc, vo_scale, vo_bias_sds, sc_loc, trg_loc)
        if False:
            # correct drifting scale
            vo_loc = (vo_loc - trg_loc) / vo_scale.reshape((-1, 1)) + trg_loc

    d1_loc_sf = apply_transf(tr_sf, d1_loc)
    d2_loc_sf = apply_transf(tr_sf, d2_loc)
    trg_loc_sf = d2_loc_sf if use_d2 else d1_loc_sf
    sc_loc_sf = apply_transf(tr_sf, sc_loc)
    isc_loc_sf = apply_transf(tr_sf, isc_loc)
    spl_loc_sf = apply_transf(tr_sf, spl_loc)
    lsr_loc_sf = apply_transf(tr_sf, lsr_loc)
    flt_loc_sf = apply_transf(tr_sf, flt_loc)
    vo_loc_sf = apply_transf(tr_sf, vo_loc)
    cnt_loc_sf = apply_transf(tr_sf, cnt_loc)

    d1_loc_stf = apply_transf(tr_stf, d1_loc)
    d2_loc_stf = apply_transf(tr_stf, d2_loc)
    trg_loc_stf = d2_loc_stf if use_d2 else d1_loc_stf
    sc_loc_stf = apply_transf(tr_stf, sc_loc)
    isc_loc_stf = apply_transf(tr_stf, isc_loc)
    spl_loc_stf = apply_transf(tr_stf, spl_loc)
    lsr_loc_stf = apply_transf(tr_stf, lsr_loc)
    flt_loc_stf = apply_transf(tr_stf, flt_loc)
    vo_loc_stf = apply_transf(tr_stf, vo_loc)
    cnt_loc_stf = apply_transf(tr_stf, cnt_loc)

    if has_vo:
        vo_loc_sf = apply_transf(tr_sf, vo_loc)
        vo_loc_stf = apply_transf(tr_stf, vo_loc)
        vo_loc_bias_stf = apply_transf(tr_stf, vo_loc_bias)
        #vo_loc_sf, _, vo_loc_bias_sf, _, _ = vo_data_prep(vo_loc_sf, vo_scale, vo_bias_sds, sc_loc_sf, trg_loc_sf)
        #vo_loc_stf, vo_scale, vo_loc_bias_stf, nkf_idxs, is_mm = vo_data_prep(vo_loc_stf, vo_scale, vo_bias_sds, sc_loc_stf, trg_loc_stf)

    if has_flt:
        flt_err_mean = tools.robust_mean(flt_loc_stf - sc_loc_stf, axis=0)
        flt_err_std = tools.robust_std(flt_loc_stf - sc_loc_stf, axis=0)
    if has_lsr:
        lsr_err_mean = tools.robust_mean((lsr_loc_stf - sc_loc_stf), axis=0)
        lsr_err_std = tools.robust_std((lsr_loc_stf - sc_loc_stf), axis=0)
    if has_cnt:
        cnt_err_mean = tools.robust_mean(
            (cnt_loc_stf - sc_loc_stf)[incl_for_stats, :], axis=0)
        cnt_err_std = tools.robust_std(
            (cnt_loc_stf - sc_loc_stf)[incl_for_stats, :], axis=0)
    if has_spl:
        spl_err_mean = tools.robust_mean(
            (spl_loc_stf - sc_loc_stf)[incl_for_stats, :], axis=0)
        spl_err_std = tools.robust_std(
            (spl_loc_stf - sc_loc_stf)[incl_for_stats, :], axis=0)
    if has_vo:
        vo_err_mean = tools.robust_mean(
            (vo_loc_stf - sc_loc_stf)[incl_for_stats, :], axis=0)
        vo_err_std = tools.robust_std(
            (vo_loc_stf - sc_loc_stf)[incl_for_stats, :], axis=0)

        # nkf_idxs need to include a nan value between vo resets, is_mm
        vo_delta_scale_mean = tools.robust_mean(
            np.diff(vo_scale[nkf_idxs])[np.logical_not(is_mm[1:])])
        vo_delta_scale_std = tools.robust_std(np.diff(
            vo_scale[nkf_idxs])[np.logical_not(is_mm[1:])],
                                              mean=0)
        vo_delta_bias_mean = tools.robust_mean(np.diff(
            vo_loc_bias_stf[nkf_idxs], axis=0)[np.logical_not(is_mm[1:]), :],
                                               axis=0)
        vo_delta_bias_std = tools.robust_std(np.diff(
            vo_loc_bias_stf[nkf_idxs], axis=0)[np.logical_not(is_mm[1:]), :],
                                             mean=0,
                                             axis=0)
        vo_mm_delta_scale_mean = tools.robust_mean(
            np.diff(vo_scale[nkf_idxs])[is_mm[1:]])
        vo_mm_delta_scale_std = tools.robust_std(np.diff(
            vo_scale[nkf_idxs])[is_mm[1:]],
                                                 mean=0)
        vo_mm_delta_bias_mean = tools.robust_mean(np.diff(
            vo_loc_bias_stf[nkf_idxs], axis=0)[is_mm[1:], :],
                                                  axis=0)
        vo_mm_delta_bias_std = tools.robust_std(np.diff(
            vo_loc_bias_stf[nkf_idxs], axis=0)[is_mm[1:], :],
                                                mean=0,
                                                axis=0)

    cutoff_time = time[0] + {
        'id1': time[-1],
        'id2': 1.5 * 73.125,
        'id3': time[-1],
        'id4': 4 * 11.91,
        'id5': 2 * 11.91,
    }[id]
    cutoff = np.argmax(time > cutoff_time)

    # normal plots
    if simple:
        fig2, axs = plt.subplots(4 + (0 if has_vo else 0),
                                 1,
                                 sharex=True,
                                 figsize=(8, 6))

        axs[0].plot(time, phase_angle / np.pi * 180, 'C0', label='phase angle')
        axs[0].set_ylabel('phase angle', color='C0')
        axs[0].tick_params(axis='y', labelcolor='C0')
        axs[0].set_ybound(0, 180)

        ax0b = axs[0].twinx()
        ax0b.plot(time, distance, 'C1', label='distance')
        ax0b.set_ylabel('distance', color='C1')
        ax0b.tick_params(axis='y', labelcolor='C1')

        axs[-1].set_xlabel('time [h]')
        for i, lab in enumerate(c_lab):
            axs[i + 1].set_ylabel(lab + ' error [m]')


#        for i, a in enumerate('real '+a for a in c_lab):
#            axs[i+1].plot(time, sc_loc_stf[:, i] - sc_loc_stf[:, i], label=a)

#        print('filter err μ=(%.2f, %.2f, %.2f), σ=(%.2f, %.2f, %.2f)' % (*flt_err_mean, *flt_err_std))
#        for i, a in enumerate('filter '+a for a in c_lab):
#            axs[i+1].plot(time, flt_loc_stf[:, i] - sc_loc_stf[:, i], label=a)

        if id in ('id3', 'id5'):
            idx = np.isclose((time * 60 * 60 - 5 + 1e-10) % 60, 0)
        else:
            idx = np.ones(len(time), dtype=np.bool)

        if has_cnt:
            print('cnt err μ=(%.2f, %.2f, %.2f), σ=(%.2f, %.2f, %.2f)' %
                  (*cnt_err_mean, *cnt_err_std))
            for i, a in enumerate(c_lab):
                axs[i + 1].plot(time[idx],
                                cnt_loc_stf[idx, i] - sc_loc_stf[idx, i],
                                'C0--',
                                label='CNT')

        if has_spl:
            print('spl err μ=(%.2f, %.2f, %.2f), σ=(%.2f, %.2f, %.2f)' %
                  (*spl_err_mean, *spl_err_std))
            for i, a in enumerate(c_lab):
                axs[i + 1].plot(time[idx],
                                spl_loc_stf[idx, i] - sc_loc_stf[idx, i],
                                'C1--',
                                label='SPL')

        if has_lsr:
            print('lsr err μ=(%.2f, %.2f, %.2f), σ=(%.2f, %.2f, %.2f)' %
                  (*lsr_err_mean, *lsr_err_std))
            for i, a in enumerate(c_lab):
                axs[i + 1].plot(time[idx],
                                lsr_loc_stf[idx, i] - sc_loc_stf[idx, i],
                                'C3:',
                                label='LSR')

        if has_vo:
            print('vo delta scale μ=%.2f, σ=%.2f' %
                  (vo_delta_scale_mean, vo_delta_scale_std))
            print('vo delta bias μ=(%.2f, %.2f, %.2f), σ=(%.2f, %.2f, %.2f)' %
                  (*vo_delta_bias_mean, *vo_delta_bias_std))
            print('vo mm delta scale μ=%.2f, σ=%.2f' %
                  (vo_mm_delta_scale_mean, vo_mm_delta_scale_std))
            print(
                'vo mm delta bias μ=(%.2f, %.2f, %.2f), σ=(%.2f, %.2f, %.2f)' %
                (*vo_mm_delta_bias_mean, *vo_mm_delta_bias_std))
            print('vo meas err μ=(%.2f, %.2f, %.2f), σ=(%.2f, %.2f, %.2f)' %
                  (*vo_err_mean, *vo_err_std))

            if id == 'id5':
                idx4 = np.isclose((time * 60 * 60 - 5 + 1e-10) % 60, 0)
            else:
                idx4 = np.ones(len(time), dtype=np.bool)

            for i, a in enumerate(c_lab):
                axs[i + 1].plot(time[idx4],
                                vo_loc_stf[idx4, i] - sc_loc_stf[idx4, i],
                                'C2-.',
                                label='VO')
            # for i, a in enumerate('vo bias ' + a for a in c_lab):
            #     axs[i].plot(time[idx], vo_loc_bias_stf[idx, i], 'b-', label=a)
            # axs[-1].plot(time[idx], vo_scale[idx], 'b-', label='vo scale')

        bounded = True
        bad_pa = get_intervals(time, phase_angle > 135 / 180 * np.pi)

        if id == 'id1':
            pass
            #axs[i].set_ybound(-1000, 1000)
        elif id == 'id2':
            if bounded:
                axs[1].set_ybound(-400, 400)
                axs[2].set_ybound(-40, 40)
                axs[3].set_ybound(-40, 40)
        elif id == 'id3':
            pass
            #axs[i].set_ybound(-1000, 1000)
        elif id == 'id4':
            if bounded:
                axs[1].set_ybound(-20, 20)
                axs[2].set_ybound(-40, 40)
                axs[3].set_ybound(-40, 40)
        elif id == 'id5':
            if bounded:
                axs[1].set_ybound(-5, 5)
                axs[2].set_ybound(-10, 10)
                axs[3].set_ybound(-10, 10)

        for i in range(1, 4):
            axs[i].legend(loc='lower right')
            for s, e in bad_pa:
                axs[i].axvspan(s, e, facecolor='#f7aaaa', alpha=0.5)  # pink
            if use_d2:
                for s, e in d2_ecl:
                    axs[i].axvspan(s, e, facecolor='#b0f9ef',
                                   alpha=0.5)  # turq
                for s, e in d1_bg:
                    axs[i].axvspan(s, e, facecolor='#f8f9b0',
                                   alpha=0.5)  # green
                for s, e in d1_fg:
                    axs[i].axvspan(s, e, facecolor='#f5b0f9',
                                   alpha=0.5)  # purple
        if bounded:
            ax0b.set_xbound(time[0], cutoff_time)

    else:
        fig2, axs = plt.subplots(4 if cum_delta_v[-1] > 0 else 3,
                                 1,
                                 sharex=True,
                                 figsize=(8, 6))

        # # location errors
        # i = 0
        # for j, a in enumerate('real '+a for a in c_lab):
        #     axs[i].plot(time, sc_loc_stf[:, j], label=a)
        # axs[i].set_prop_cycle(None)
        # for j, a in enumerate('filter '+a for a in c_lab):
        #     axs[i].plot(time, flt_loc_stf[:, j], ':', label=a)
        #
        # axs[i].set_title('filter output\nerr μ=(%.2f, %.2f, %.2f), σ=(%.2f, %.2f, %.2f)' % (*flt_err_mean, *flt_err_std))
        # axs[i].legend(loc='lower right')
        #
        # # measurements
        # i += 1
        # for j, a in enumerate('real '+a for a in c_lab):
        #     axs[i].plot(time, sc_loc_stf[:, j], label=a)
        # axs[i].set_prop_cycle(None)
        #
        # if has_spl:
        #     for j, a in enumerate('spl '+a for a in c_lab):
        #         axs[i].plot(time, spl_loc_stf[:, j], 'C1--', label=a)
        #     axs[i].set_prop_cycle(None)
        #
        # if has_lsr:
        #     for j, a in enumerate('laser '+a for a in c_lab):
        #         axs[i].plot(time, lsr_loc_stf[:, j], 'r:', label=a)
        #     axs[i].set_prop_cycle(None)
        #
        # if has_vo:
        #     for j, a in enumerate('vo '+a for a in c_lab):
        #         axs[i].plot(time, vo_loc_stf[:, j], 'C2.-', label=a)
        #     axs[i].set_prop_cycle(None)
        #
        # axs[i].set_title('measurements'
        #                  + ('\nopt err μ=(%.2f, %.2f, %.2f), σ=(%.2f, %.2f, %.2f)' % (*spl_err_mean, *spl_err_std) if has_spl else '')
        #                  + ('\nlsr err μ=(%.2f, %.2f, %.2f), σ=(%.2f, %.2f, %.2f)' % (*lsr_err_mean, *lsr_err_std) if has_lsr else '')
        #                  + ('\nvo err μ=(%.2f, %.2f, %.2f), σ=(%.2f, %.2f, %.2f)' % (*vo_err_mean, *vo_err_std) if has_vo else '')
        #                  )
        # axs[i].legend(loc='lower right')

        # measurement likelihood
        i += 1
        axs[i].plot(time, meas_ll)
        axs[i].set_title('measurement likelihood')

        # delta-v used
        if cum_delta_v[-1] > 0:
            i += 1
            axs[i].plot(time, cum_delta_v)
            axs[i].set_title('cumulative delta-v usage')

        axs[i].set_xlim(np.min(time), np.max(time))
    plt.tight_layout()

    # plot didymain & didymoon
    fig1, ax = plt.subplots(figsize=(7, 7))

    if video:
        framerate = 25
        dw, dh = fig1.canvas.get_width_height()
        writer = cv2.VideoWriter(filename[:-4] + '.avi',
                                 cv2.VideoWriter_fourcc(*'DIVX'), framerate,
                                 (dw * 2, dh * 2))

    try:
        skip = 2
        for c in range(skip, len(d1_loc_sf), skip):
            if video:
                tools.show_progress(len(d1_loc_sf) // skip, c // skip)
            else:
                c = cutoff or -1

            if is_vo:
                # for c in range(0, len(d1_loc_sf), 30):
                #     plot_orbit_sf(ax, d1_loc_sf, sc_loc_sf, vo_loc_sf, cutoff=c, idx1=1, static=False)
                plot_orbit_sf(ax,
                              d1_loc_sf,
                              sc_loc_sf,
                              vo_loc_sf,
                              cutoff=c,
                              static=not video)
            elif is_4km:
                plot_orbit_sf(
                    ax,
                    d1_loc,
                    d2_loc,
                    sc_loc,
                    flt_loc if has_flt else None,
                    spl_loc=spl_loc[idx, :] if id in ('id1', 'id2',
                                                      'id3') else None,
                    vo_loc=vo_loc[idx4, :]
                    if id in ('id1', 'id3') and has_vo else None,
                    synodic=False,
                    cutoff=c,
                    static=not video)
            else:
                plot_orbit_sf(
                    ax,
                    d1_loc_sf,
                    d2_loc_sf,
                    sc_loc_sf,
                    flt_loc_sf if has_flt else None,
                    spl_loc=spl_loc_sf[idx, :] if id in ('id4',
                                                         'id5') else None,
                    #vo_loc=vo_loc_sf[idx4, :] if id in ('id5',) else None,
                    synodic=True,
                    cutoff=c,
                    static=not video)
            if video:
                #plt.tight_layout()
                # plt.pause(0.05)
                # plt.waitforbuttonpress()
                mi = [m for m in (5760, 7593) if m < c]
                if len(mi) > 0:
                    ax.plot(spl_loc[mi, 0],
                            spl_loc[mi, 1],
                            'bv',
                            label='Maneuver',
                            fillstyle='none')
                errtxt = 'error [m]: x=%5.1f, y=%5.1f, z=%5.1f' % tuple(
                    spl_loc[c, :] - sc_loc[c, :])
                plt.text(2650,
                         9500,
                         errtxt,
                         family='monospace',
                         fontsize=12,
                         horizontalalignment='center')
                ax.set_xbound(-5200, 10500)
                ax.set_ybound(-7100, 8600)
                fig1.canvas.draw()
                img = np.frombuffer(fig1.canvas.tostring_argb(),
                                    dtype=np.uint8)
                img.shape = (dh * 3, dw * 3, 4)  # why need *3 ???
                # canvas.tostring_argb give pixmap in ARGB mode. Roll the ALPHA channel to have it in RGBA mode
                img = np.roll(img, 3, axis=2)
                img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGR)
                img = cv2.resize(img, (dw * 2, dh * 2))
                if False:
                    cv2.imshow('test', img)
                    cv2.waitKey()
                writer.write(img)
                ax.clear()
            else:
                plt.tight_layout()
                plt.show()
                break
    finally:
        if video:
            writer.release()