Exemplo n.º 1
0
class ModelAggregator(Module):
    """Combine 1+ models into an aggregate model
    """
    _settings = ModuleSettings(namespace='fitting')
    _input_ports = [
        IPort(name='models',
              label='models to aggregate',
              signature='basic:Variant')
    ]
    _output_ports = [
        OPort(name='aggregated_models', signature='basic:Variant')
    ]

    def compute(self):
        """Mandatory override of parent `Module` class.

        Loop over however many models are connected to the 'models' input port
        and combine them into a single aggregate model
        """
        models = self.get_input_list('models')
        aggregated = models[0]
        if len(models) > 2:
            for model in models[1:]:
                aggregated += model
        self.set_output('aggregated_models', aggregated)
Exemplo n.º 2
0
class FindData(Module):
    _settings = ModuleSettings(namespace="io")

    _input_ports = [
        IPort(name="file name",
              label="file name and extension to search for",
              signature="basic:String"),
        IPort(name="seed path",
              label="path corresponding to the "
              "search starting point. Defaults to "
              "the user's home directory.",
              default="~",
              signature="basic:String"),
    ]

    _output_ports = [OPort(name="file path", signature="basic:String")]

    def compute(self):
        seed_path = self.get_input("seed path")
        file_name = self.get_input("file name")
        print file_name
        existing_files = []

        for dir_tree in os.walk(os.path.expanduser(seed_path)):
            if file_name in dir_tree[2]:
                existing_files.append(os.path.join(dir_tree[0], file_name))
        print existing_files

        for path in existing_files:
            if 'Demos' in path:
                file_path = path

        self.set_output("file path", file_path)
Exemplo n.º 3
0
class NestedDictCell(SpreadsheetCell):
    _settings = ModuleSettings(namespace="vis")
    _input_ports = [
        IPort(name="dict_list", label="Dictionary to display",
              signature="basic:List"),
    ]

    def compute(self):
        dict_list = self.get_input("dict_list")
        self.cellWidget = self.displayAndWait(NestedDictWidget, (dict_list,))
Exemplo n.º 4
0
def gen_module_ufunc(input_ports,
                     output_ports,
                     docstring,
                     module_name,
                     library_func,
                     module_namespace,
                     dict_port=None):
    if dict_port is not None:
        raise NotImplementedError("Dict_port is not supported for ufuncs")
    # can't unpack dicts into ufuncs, assume all are
    # mandatory
    input_ports = [IPort(**pdict) for pdict in input_ports]
    output_ports = [OPort(**pdict) for pdict in output_ports]

    mandatory = input_ports
    arg_names = [m.name for m in mandatory]
    if len(mandatory) != library_func.nin:
        raise ValueError("wrap {} : \n".format(library_func.__name__) +
                         "the docstring parsing went wrong " +
                         "ufunc should have {} args".format(library_func.nin) +
                         " parsing docstring has {}".format(len(mandatory)))

    if len(output_ports) != library_func.nout:
        raise ValueError("wrap {} : \n".format(library_func.__name__) +
                         "the docstring parsing went wrong" +
                         "ufunc should have {} out".format(library_func.nout) +
                         " parsing docstring has {}".format(len(output_ports)))

    def compute(self):
        args = list()
        for arg_name in arg_names:
            args.append(self.get_input(arg_name))

        ret = library_func(*args)
        if len(output_ports) == 1:
            self.set_output(output_ports[0].name, ret)
        else:
            for (out_port, ret_val) in zip(output_ports, ret):
                self.set_output(out_port.name, ret_val)

    _settings = ModuleSettings(namespace=module_namespace)

    new_class = type(
        str(module_name), (Module, ), {
            'compute': compute,
            '__module__': __name__,
            '_settings': _settings,
            '__doc__': docstring,
            '__name__': module_name,
            '_input_ports': input_ports,
            '_output_ports': output_ports
        })
    return new_class
Exemplo n.º 5
0
class ReadNumpy(Module):
    _settings = ModuleSettings(namespace="io")
    _input_ports = [
        IPort(name="file", label="File to read in", signature="basic:List")
    ]
    _output_ports = [OPort(name="data", signature="basic:List")]

    def compute(self):
        fnames = self.get_input('file')
        data = []
        data = [np.load(fname + '.npy') for fname in fnames]
        self.set_output('data', data)
Exemplo n.º 6
0
class ReadTiff(Module):
    _settings = ModuleSettings(namespace="io")

    _input_ports = [
        IPort(name="files", label="List of files", signature="basic:List"),
    ]

    _output_ports = [OPort(name="data", signature="basic:List")]

    def compute(self):
        files_list = self.get_input("files")
        data_list = []
        for file in files_list:
            data_list.append(imread(file))
        self.set_output("data", data_list)
Exemplo n.º 7
0
class CalibrationParameters(Module):
    _settings = ModuleSettings(namespace="broker")
    _input_ports = [
        IPort(name="run_header",
              label="Run header from the data broker",
              signature="basic:Dictionary"),
    ]
    _output_ports = [
        OPort(name='calib_dict', signature='basic:Dictionary'),
        OPort(name='nested', signature='basic:Boolean'),
    ]

    def compute(self):
        header = self.get_input('run_header')
        calib_dict, nested = get_calib_dict(header)
        self.set_output('calib_dict', calib_dict)
        self.set_output('nested', nested)
Exemplo n.º 8
0
class Stack1DCell(SpreadsheetCell):
    _settings = ModuleSettings(namespace="vis")
    _input_ports = [
        IPort(name="data", label="Data to display",signature="basic:List"),
        IPort(name="keys", label="Names of the data",signature="basic:List"),
    ]

    _output_ports = [
        OPort(name="displayed_data", signature="basic:List"),
    ]

    def compute(self):
        data = self.get_input("data")
        try:
            keys = self.get_input("keys")
        except ModuleError:
            keys = range(len(data))
        self.cellWidget = self.displayAndWait(Stack1DWidget, (data,keys,))
Exemplo n.º 9
0
class SwapAxes(Module):
    _settings = ModuleSettings(namespace="utility")
    _input_ports = [
        IPort(name='arr', label='N-D array', signature='basic:List'),
        IPort(name='ax0', label='Axis to swap from',
              signature='basic:Integer'),
        IPort(name='ax1', label='Axis to swap from',
              signature='basic:Integer'),
    ]
    _output_ports = [OPort(name='out', signature='basic:List')]

    def compute(self):
        arr = self.get_input('arr')
        ax0 = self.get_input('ax0')
        ax1 = self.get_input('ax1')
        arr = np.asarray(arr)

        self.set_output('out', np.swapaxes(arr, ax0, ax1))
Exemplo n.º 10
0
class Flatten(Module):
    _settings = ModuleSettings(namespace="utility")

    _input_ports = [
        IPort(name="list_of_lists",
              label="List of lists to flatten",
              signature="basic:List"),
    ]

    _output_ports = [
        OPort(name="flattened", signature="basic:List"),
    ]

    def compute(self):
        # gather input
        lists = self.get_input('list_of_lists')
        raveled = [np.ravel(im) for im in lists]
        flattened = [item for sublist in raveled for item in sublist]
        self.set_output('flattened', flattened)
Exemplo n.º 11
0
class BrokerQuery(Module):
    _settings = ModuleSettings(namespace="broker")

    _input_ports = [
        IPort(name="unique_query_dict",
              label="guaranteed unique query for the data broker",
              signature="basic:Dictionary"),
        IPort(name="query_dict",
              label="Query for the data broker",
              signature="basic:Dictionary"),
        IPort(name="is_returning_data",
              label="Return data with search results",
              signature="basic:Boolean",
              default=True)
    ]

    _output_ports = [
        OPort(name="query_result", signature="basic:Dictionary"),
    ]

    def compute(self):
        query = None
        if self.has_input("query_dict"):
            query = self.get_input("query_dict")
            return_only_one = False
        if self.has_input("unique_query_dict"):
            query = self.get_input("unique_query_dict")
            return_only_one = True

        if query is None:
            logger.debug("no search dictionary was passed in, search "
                         "cannot proceed")
            return
        logger.debug("broker_query: {0}".format(query))
        data = self.get_input("is_returning_data")
        query["data"] = data
        result = search(**query)
        if return_only_one:
            keys = list(result)
            result = result[keys[0]]
        self.set_output("query_result", result)
        logger.debug("result: {0}".format(list(result)))
Exemplo n.º 12
0
class Average(Module):
    _settings = ModuleSettings(namespace="utility")

    _input_ports = [
        IPort(name="input",
              label="Iterable to compute the average of",
              signature="basic:Variant"),
    ]

    _output_ports = [
        OPort(name="avg", signature="basic:Float"),
        OPort(name="avg_str", signature="basic:String"),
    ]

    def compute(self):
        # gather input
        input = self.get_input('input')
        # np.average(input)
        avg = np.average(input)

        self.set_output('avg', avg)
        self.set_output('avg_str', str(avg))
Exemplo n.º 13
0
class DataGen(Module):
    _settings = ModuleSettings(namespace="vis|test")
    _input_ports = [
        IPort(name="num_datasets",
              label="Number of datasets to generate",
              signature="basic:Integer"),
    ]

    _output_ports = [
        OPort(name="OneDimStack", signature="basic:List"),
        OPort(name="TwoDimStack", signature="basic:List"),
        OPort(name="DataLabels", signature="basic:List"),
    ]

    def compute(self):
        length = self.get_input("num_datasets")
        self.set_output("OneDimStack", self.make_onedim(length))
        self.set_output("TwoDimStack", self.make_twodim(length))
        self.set_output("DataLabels", self.make_labels(length))

    def make_onedim(self, length):
        """
        Construct a one dimensional stack of height 'length'

        Parameters
        ----------
        length : int
            number of datasets to generate

        Returns
        -------
        data : list
            list of 2d np.ndarray
        """
        x_axis = np.arange(0, 25, .01)
        data = []
        for idx in range(length):
            x = x_axis
            y = np.sin(x_axis + idx)
            data.append((x, y))

        return data

    def make_twodim(self, length):
        """
        Construct a two dimensional stack of height 'length'

        Parameters
        ----------
        length : int
            number of datasets to generate

        Returns
        -------
        data : list
            list of 2d np.ndarray
        """
        x, y = [_ * 2 * np.pi / 500 for _ in np.ogrid[-500:500, -500:500]]
        rep = int(np.sqrt(length))
        data = []
        for idx in range(length):
            kx = idx // rep + 1
            ky = idx % rep
            data.append(np.sin(kx * x) * np.cos(ky * y) + 1.05)

        return data

    def make_labels(self, length):
        return [str(_) for _ in range(length)]
Exemplo n.º 14
0
def gen_module(input_ports, output_ports, docstring,
               module_name, library_func, module_namespace,
               dict_port=None):

    mandatory = []
    optional = []

    # create the lists of mandatory and optional input ports
    for port in input_ports:
        if port == dict_port:
            # since dict port must be in the input_ports list but we dont want
            # to treat it as a normal input port, do not assign it as
            # optional or mandatory
            continue
        if port.optional:
            optional.append(port.name)
        else:
            mandatory.append(port.name)

    def compute(self):
        dict_from_port = {}
        params_dict = {}
        if dict_port is not None:
            dict_from_port = self.get_input(dict_port.name)

        for opt in optional:
            if opt in dict_from_port:
                # obtain the parameter from the passed in dict
                params_dict[opt] = dict_from_port[opt]
            if self.has_input(opt):
                params_dict[opt] = self.get_input(opt)

        for mand in mandatory:
            if mand in dict_from_port:
                params_dict[mand] = dict_from_port[mand]
            try:
                params_dict[mand] = self.get_input(mand)
            except ModuleError as me:
                if mand in params_dict:
                    # pass on this exception, as the dictionary on dict_port
                    # has taken care of this key
                    pass
                else:
                    logger.debug('The mandatory port {0} does not have input'
                                 'and the input dictionary is either not '
                                 'present or doesn\'t contain this key'
                                 ''.format(mand))
                    raise ModuleError(__name__, me)
        # check for the presence of a 'value' attribute on the incoming
        # port values. This indicates that this is a NSLS2 port type
        for name, val in six.iteritems(params_dict):
            print('name [{0}] has attribute value [{1}]'.format(name, val))
            if hasattr(val, 'value'):
                print('name [{0}] has attribute value [{1}]'.format(name, val))
                params_dict[name] = val.value

        ret = library_func(**params_dict)
        if len(output_ports) == 1:
            self.set_output(output_ports[0].name, ret)
        else:
            for (out_port, ret_val) in zip(output_ports, ret):
                self.set_output(out_port.name, ret_val)

    _settings = ModuleSettings(namespace=module_namespace)

    new_class = type(str(module_name),
                     (Module,), {'compute': compute,
                                 '__module__': __name__,
                                 '_settings': _settings,
                                 '__doc__': docstring,
                                 '__name__': module_name,
                                 '_input_ports': input_ports,
                                 '_output_ports': output_ports})
    return new_class
Exemplo n.º 15
0
def gen_module(input_ports,
               output_ports,
               docstring,
               module_name,
               library_func,
               module_namespace,
               dict_port=None):
    """
    Parameters
    ----------
    input_ports : list
       List of input ports

    output_ports : list
       List of output ports

    docstring : ?
    module_name : str
        The name of the module (as displayed in vistrails

    library_func : callable
        The callable object to be wrapped for VisTrails

    module_namespace : str
        Vistrails namespace to use

    dict_port : ?
    """
    # convert input/output specs into VT port objects
    input_ports = [IPort(**pdict) for pdict in input_ports]
    output_ports = [OPort(**pdict) for pdict in output_ports]
    mandatory = []
    optional = []

    # create the lists of mandatory and optional input ports
    for port in input_ports:
        if port == dict_port:
            # since dict port must be in the input_ports list but we dont want
            # to treat it as a normal input port, do not assign it as
            # optional or mandatory
            continue
        if port.optional:
            optional.append(port.name)
        else:
            mandatory.append(port.name)

    def compute(self):
        dict_from_port = {}
        params_dict = {}
        if dict_port is not None:
            dict_from_port = self.get_input(dict_port.name)

        for opt in optional:
            if opt in dict_from_port:
                # obtain the parameter from the passed in dict
                params_dict[opt] = dict_from_port[opt]
            if self.has_input(opt):
                if opt in vt_reserved:
                    p_name = '_' + opt
                else:
                    p_name = opt
                params_dict[opt] = self.get_input(p_name)

        for mand in mandatory:
            if mand in vt_reserved:
                p_name = '_' + mand
            else:
                p_name = mand
            if mand in dict_from_port:
                params_dict[mand] = dict_from_port[mand]
            try:
                params_dict[mand] = self.get_input(p_name)
            except ModuleError as me:
                if mand in params_dict:
                    # pass on this exception, as the dictionary on dict_port
                    # has taken care of this key
                    pass
                else:
                    logger.debug('The mandatory port {0} does not have input'
                                 'and the input dictionary is either not '
                                 'present or doesn\'t contain this key'
                                 ''.format(mand))
                    raise ModuleError(__name__, me)
        # check for the presence of a 'value' attribute on the incoming
        # port values. This indicates that this is a NSLS2 port type
        for name, val in six.iteritems(params_dict):
            if hasattr(val, 'value'):
                params_dict[name] = val.value
        ret = library_func(**params_dict)
        if len(output_ports) == 1:
            self.set_output(output_ports[0].name, ret)
        else:
            for (out_port, ret_val) in zip(output_ports, ret):
                self.set_output(out_port.name, ret_val)

    _settings = ModuleSettings(namespace=module_namespace)

    new_class = type(
        str(module_name), (Module, ), {
            'compute': compute,
            '__module__': __name__,
            '_settings': _settings,
            '__doc__': docstring,
            '__name__': module_name,
            '_input_ports': input_ports,
            '_output_ports': output_ports
        })
    return new_class
Exemplo n.º 16
0
class Listify(Module):
    src = "Cannot display wrapped source code as it was not found."
    try:
        src = obj_src(listify)
        doc = ('source for wrapped function '
               'metadataStore.utilities.commands:listify:\n\n' +
               six.text_type(src.__str__()))

    except IOError as ie:
        msg = 'original source cannot be found for Listify'
        logger.debug(msg)
        print(msg)
        src = docstring_func(listify)
        doc = ('docstring for wrapped function '
               'metadataStore.utilities.commands:listify:\n\n' +
               six.text_type(src.__str__()))

    __doc__ = ('Transpose the run header events into data lists\n\n' + doc)

    _settings = ModuleSettings(namespace="broker")

    _input_ports = [
        IPort(name="run_header",
              label="Run header from the data broker",
              signature="basic:Dictionary"),
        IPort(name="data_key",
              label="The data key to turn in to a list",
              signature="basic:String"),
    ]

    _output_ports = [
        OPort(name="listified_data", signature="basic:List"),
        OPort(name="listified_time", signature="basic:List"),
    ]

    def compute(self):
        # gather input
        header = self.get_input("run_header")

        key = None
        if self.has_input("data_key"):
            key = self.get_input("data_key")
        # print('key input: {0}'.format(key))
        data_dict = listify(data_keys=key, run_header=header)
        # print('data_dict: {0}'.format(data_dict))
        # remove time from the dictionary
        time = data_dict.pop('time')
        # stringify the datetime object that gets returned
        time = [t.isoformat() for t in time]
        # get the remaining keys
        key = list(data_dict)
        # verify that there is only one key in the dictionary
        if len(key) != 1:
            raise ValueError("The return value from "
                             "metadataStore.utilities.utility.listify had "
                             "more than one key. Keys: {0}".format(key))
        key = key[0]
        data = data_dict[key]
        # check to see if data is a list of lists
        if len(data) == 1 and isinstance(data[0], list):
            data = data[0]
        # check to see if the data name exists in the sig_map dict. If so, this
        # means that the data elements should be formatted into VisTrails
        # objects
        if key in sig_map:
            sig = sig_map[key].split(':')
            mod = self.registry.get_module_by_name(
                sig[0], sig[1])
            data = [mod(d) for d in data]
        # log the values set to the output ports at a debug level
        logger.debug('data ', data)
        logger.debug('time ', time)
        # set the module's output
        self.set_output("listified_data", data)
        self.set_output("listified_time", time)
Exemplo n.º 17
0
class Crop2D(Module):
    """Cropping Module

    Create a binary mask for an image based on two points

    +---------------------+
    |                     |
    | p1-> +----+         |
    |      |    |         |
    |      +----+ <- p2   |
    |                     |
    +---------------------+

    p1 = (row, col)
    p2 = (row, col)

    Input ports are p1r, p1c, p2r, p2c.  Any combination of input ports are
    valid.  If either of the p1 ports are not present their value will set to
    zero.  If either of the p2 ports are not present, their value will be set
    to the number of rows or columns, respectively.
    """

    _settings = ModuleSettings(namespace="utility")
    _input_ports = [
        IPort(name='num_rows',
              label='Number of rows in the image',
              signature='basic:Integer'),
        IPort(name='num_cols',
              label='Number of columns in the image',
              signature='basic:Integer'),
        IPort(name='top_left_row',
              label='pixel coordinate of the row of the top left corner',
              signature='basic:Integer'),
        IPort(name='top_left_column',
              label='pixel coordinate of the column of the top left corner',
              signature='basic:Integer'),
        IPort(name='bottom_right_row',
              label='pixel coordinate of the row of the bottom right corner',
              signature='basic:Integer'),
        IPort(
            name='bottom_right_column',
            label='pixel coordinate of the column of the bottom right corner',
            signature='basic:Integer'),
    ]
    _output_ports = [OPort(name='bin_mask', signature='basic:Variant')]

    def compute(self):
        rows = self.get_input('num_rows')
        cols = self.get_input('num_rows')
        im = np.zeros((rows, cols), 'Bool')
        p1c = 0
        p1r = 0
        p2c = cols
        p2r = rows
        if self.has_input('top_left_column'):
            p1c = self.get_input('top_left_column')
        if self.has_input('top_left_row'):
            p1r = self.get_input('top_left_row')
        if self.has_input('bottom_right_column'):
            p2c = self.get_input('bottom_right_column')
        if self.has_input('bottom_right_row'):
            p2r = self.get_input('bottom_right_row')

        im[p1r:p2r, p1c:p2c] = True

        self.set_output('bin_mask', im)