Exemplo n.º 1
0
def picture_prosess(features, targeted_column, classifier):
    """
    Calls upon data.diabetes_dataset() and fitting.fit() to predict and calculate
    accuracy to be displayed on the web-page. Visualize.visualizer() will also be
    called if only two checkboxes are checked.

    The scatterplots are saved in buffers to avoid problems with matplotlib, flask,
    and python. There has been some problems occurring testing (Mac) with all
    the latest updates to the packages. Without the buffers the scatterplots would not
    be updated in real time when checking new checkboxes without having to restart
    the page. Since the scatterplots should only be displayed when 2 checkboxes are
    marked, the whole buffer and scatter-plot action is inside an if-statement.

        args:
            features (list:String): list containing names of features(columns)
            targeted_column (String): name of column
            classifier (String): name of classifier

        returns:
            t_ac (float):
            v_ac (float):
            img1 (string): scatter plot object 1
            img2 (string): scatter plot object 2
    """
    data_frame, training_set, validation_set = data.diabetes_dataset()
    trained_classifier = fitting.fit(training_set, classifier, features, targeted_column)

    img1 = None
    img2 = None

    prediction1 = trained_classifier.predict(training_set[features])
    t_ac = metrics.accuracy_score(training_set[targeted_column], prediction1)

    prediction2 = trained_classifier.predict(validation_set[features])
    v_ac = metrics.accuracy_score(validation_set[targeted_column], prediction2)

    if(len(features) == 2):
        buf = BytesIO()
        #add to buffer
        (visualize.visualizer(prediction1, training_set, features)).savefig(buf, format="png")
        img1 = base64.b64encode(buf.getbuffer()).decode("ascii")

        buf = BytesIO()
        #add to buffer
        (visualize.visualizer(prediction2, validation_set, features)).savefig(buf, format="png")
        img2 = base64.b64encode(buf.getbuffer()).decode("ascii")

    return t_ac, v_ac, img1, img2
Exemplo n.º 2
0


plt.figure(figsize=(10,7))
sn.heatmap(df.corr(),annot=True,cmap = 'Blues',vmin=-1,vmax=1,center=0,linewidths=2, linecolor='black')
plt.xticks(fontsize=15,rotation=90)
plt.yticks(fontsize=15,rotation=0)
plt.title('Correlation HeatMap')


#plt.show()
# Instead of plt.show(), do the following: 



viz = visualizer()
viz.jumbocard('Jumbocard Heading', plt,'My Description: This is An Important Graph')






df.groupby(['Target']).mean()



df.groupby(['Target']).median()


Exemplo n.º 3
0
    formatter_class=argparse.RawTextHelpFormatter,
)

parser.add_argument("--vis", help="Will display the tree", dest='vis')

parser.add_argument(
    "--get",
    help="Will get a desired component from a desired person",
    choices=['siblings', 'parents', 'spouse', 'children', 'cousins'],
    dest='get')

t = text_reader('stark_family_tree.txt')
args = parser.parse_args()

if args.vis:
    visualizer('stark_family_tree.txt')

if args.get == "parents":
    ans = input("Whose Parents would you like to find? ")
    while t.findPerson(ans) is None:
        ans = input("That person isn't in the tree, sorry. Try again: ")
    if t.getParents(ans) is None:
        print(ans, "has no parents in the tree.")
    else:
        print("The parents of ", ans, "are: ")
        print(", ".join(t.getParents(ans)))

if args.get == "siblings":
    ans = input("Whose siblings would you like to find? ")
    while t.findPerson(ans) is None:
        ans = input("That person isn't in the tree, sorry. Try agian: ")
Exemplo n.º 4
0
    def play_game(self):

        shaker = sh.Shaker()
        shake_switch = False
        shake_ended = False
        vis = visualizer()

        cap = cv2.VideoCapture(0)
        frame_cnt = 0

        if self.save_video:
            fourcc = cv2.VideoWriter_fourcc(*'XVID') 
            out = cv2.VideoWriter(
                    self.out_dir + "webcam_out.avi",\
                    fourcc, round(cap.get(5)), \
                    frame_size)
            out_mask = cv2.VideoWriter(
                    self.out_dir + "webcam_out_mask.avi",\
                    fourcc, round(cap.get(5)), \
                    frame_size)
                    
        decision_cnt = 0 
        finger_cnt = 0
        rps = 'r'

        while cap.isOpened():
            ret, frame = cap.read()
            frame_cnt += 1

            if ret is False:
                break
            frame = cv2.resize(frame, frame_size)

            #frame = cv2.flip(frame, 0)
            #frame = cv2.flip(frame, 1)
            
            mask = sd.detect_skin(frame)

            if self.save_video:
                out.write(cv2.cvtColor(mask,\
                    cv2.COLOR_GRAY2BGR))

            if shake_ended is True:
                if shake_switch is False:
                    print('shake ended')
                    shake_switch = True
                    img1, img2 = shaker.get_minmax_image()
                    cv2.imwrite(self.out_dir + 'webcam_max.jpg', img1)
                    cv2.imwrite(self.out_dir + 'webcam_min.jpg', img2)
                    scc = SkinColorClassifier(img1, img2)

                mask = scc.mask_image(frame)
                mask = sd.morphological_transform(mask)
                cv2.imshow('scc mask',mask)
                frame, finger_cnt = count_finger(frame, mask)
                print(finger_cnt)
                
            else:
                mask = sd.detect_skin(frame)
                decision_cnt += 1
            
            if shake_switch is False:
                shake_ended = shaker.shake_detect(mask, frame)
            #out.write(frame)
            out_mask.write(cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR))
            frame = vis.visualize(frame, finger_cnt, decision_cnt, True)
            cv2.imshow('frame', frame)
            k = cv2.waitKey(5) & 0xFF
            if k == 27:
                break
        
        if self.save_video:
            out.release()
            out_mask.release()
        plt.plot(shaker.yhistory)
        plt.ylabel('avg y')
        
        plt.plot(shaker.smoothed)
        plt.ylabel('smoothed')
        plt.savefig(self.out_dir + "webcam_plot.png")
        plt.clf()
        cap.release()
        cv2.destroyAllWindows()
        if shake_switch:
            return 1
        else:
            return 0
Exemplo n.º 5
0
    def play_game(self):

        shaker = sh.Shaker()
        shake_switch = False
        shake_ended = False
        vis = visualizer()

        cap = cv2.VideoCapture(self.in_dir + self.video_name)
        frame_cnt = 0
        f = open(self.out_dir + self.report_name, 'a')
        f.write(self.video_name + ": ")
        pure_video_name = self.video_name.replace('.MOV', '')

        if self.save_video:
            fourcc = cv2.VideoWriter_fourcc(*'XVID')
            out = cv2.VideoWriter(
                    self.out_dir + pure_video_name + "out.avi",\
                    fourcc, round(cap.get(5)), \
                    frame_size)

        avg = 0
        decision_cnt = 0
        finger_cnt = 0
        rps = 'r'

        while cap.isOpened():
            ret, frame = cap.read()
            frame_cnt += 1

            if ret is False:
                break
            frame = cv2.resize(frame, frame_size)

            frame = cv2.flip(frame, 0)
            frame = cv2.flip(frame, 1)

            mask = sd.detect_skin(frame)
            #cv2.imshow('mask', mask)

            if self.save_video:
                out.write(cv2.cvtColor(mask,\
                    cv2.COLOR_GRAY2BGR))

            if shake_ended is True:
                if shake_switch is False:
                    print('shake ended')
                    #time.sleep(2)
                    shake_switch = True
                    img1, img2 = shaker.get_minmax_image()
                    #cv2.imwrite(self.out_dir + pure_video_name + '_max.jpg', img1)
                    #cv2.imwrite(self.out_dir + pure_video_name + '_min.jpg', img2)
                    #f.write(str(frame_cnt))

                #mask = scc.mask_image(frame)
                mask = sd.morphological_transform(mask)
                frame, finger_cnt = count_finger(frame, mask)
                print(finger_cnt)

            else:
                mask = sd.detect_skin(frame)
                decision_cnt += 1

            if shake_switch is False:
                shake_ended = shaker.shake_detect(mask, frame)

            frame = vis.visualize(frame, finger_cnt, decision_cnt)
            cv2.imshow('frame', frame)
            k = cv2.waitKey(5) & 0xFF
            if k == 27:
                break

        time.sleep(2)
        f.write('\n')
        f.close()
        if self.save_video:
            out.release()
        plt.plot(shaker.yhistory)
        plt.ylabel('avg y')

        plt.plot(shaker.smoothed)
        plt.ylabel('smoothed')
        plt.savefig(self.out_dir + pure_video_name + "_plot.png")
        plt.clf()
        cap.release()
        cv2.destroyAllWindows()
        if shake_switch:
            return 1
        else:
            return 0
Exemplo n.º 6
0
import visualize
emotion_array = visualize.visualizer()
emotion_array = np.array(emotion_array)
emotion_array = (emotion_array / sum(emotion_array)) * 100

plt.rcParams['figure.figsize'] = (13.5, 5.5)
for i in range(len(emotion_array)):
    axes = plt.subplot(2, 4, i)
    emojis_img = io.imread('images/emojis/%s.png' % str(class_names[i]))
    plt.imshow(emojis_img)
    plt.xlabel(str(emotion_array(i)), fontsize=16)
    axes.set_xticks([])
    axes.set_yticks([])
plt.tight_layout()
plt.savefig(os.path.join('images/results/{}.png'.format(i + 1)))
plt.close()
Exemplo n.º 7
0
            self.tiles.append(x)
            self.board_map[self.numbers[0]].append(x)
            self.numbers = self.numbers[1:]

        x = tile("Wood", self.numbers[0], '#006600')
        self.tiles.append(x)
        self.board_map[self.numbers[0]].append(x)
        self.numbers = self.numbers[1:]

        x = tile("Sheep", self.numbers[0], '#99ff33')
        self.tiles.append(x)
        self.board_map[self.numbers[0]].append(x)
        self.numbers = self.numbers[1:]

        x = tile("Wheat", self.numbers[0], '#cccc00')
        self.tiles.append(x)
        self.board_map[self.numbers[0]].append(x)
        self.numbers = self.numbers[1:]

        self.tiles.append(tile("Desert", 0, '#999966'))

        shuffle(self.tiles)


board = board()
view = visualizer()
board = view.visualize_board(board, x, y)

# view.draw_settlement(board.vertices[0].coord, '#ff0000')
# view.draw_road(board.vertices[0].coord, board.vertices[1].coord, '#ff0000')
Exemplo n.º 8
0
GREEN = (0, 255, 0)
THICKNESS = 3

if __name__ == '__main__':
    import cv2
    import data
    from visualize import visualizer, cv2Window
    from detect import detectMultiscale

    def predictionCallback(img):
        start = timer()
        detections = detectMultiscale(img)

        if PROFILE:
            print('Prediction took %fs' % (timer() - start,))
        
        for (xMin, yMin, xMax, yMax) in detections: 
            cv2.rectangle(img, (xMin, yMin), (xMax, yMax), GREEN, THICKNESS)


    if TEST:
        visualizer(data.getTestImagePaths(), predictionCallback, WINDOW_TITLE)
    elif TRAIN:
        from train import train
        train(STAGE_IDX, TRAIN_CALIB)
    elif LIVE:
        from RealSense import Streamer, LiveDisplay

        with cv2Window(LIVE_WINDOW_TITLE) as win, Streamer() as stream:
            liveStream = LiveDisplay(stream, win)
            liveStream.run(predictionCallback)
    def play_game(self):

        shaker = sh.DiffShaker()
        scc = None
        shake_switch = False
        shake_ended = False
        cnt_list = []
        vis = visualizer()

        cap = cv2.VideoCapture(self.in_dir + self.video_name)
        print(self.in_dir + self.video_name)
        frame_cnt = 0
        f = open(self.out_dir + self.report_name, 'a')
        f.write(self.video_name + ": ")
        pure_video_name = self.video_name.replace('.MOV', '')
        decision_cnt = 0
        finger_cnt = 0

        if self.save_video:
            fourcc = cv2.VideoWriter_fourcc(*'XVID')
            out = cv2.VideoWriter(
                    self.out_dir + pure_video_name + "out.avi",\
                    fourcc, round(cap.get(5)), \
                    frame_size)

        ret, prev_frame = cap.read()
        prev_frame = render_frame(prev_frame)

        while cap.isOpened():

            ret, curr_frame = cap.read()
            frame_cnt += 1

            if ret is False:
                break

            curr_frame = render_frame(curr_frame)

            if shake_ended is True:
                if shake_switch is False:
                    # only started once
                    print('shake ended')
                    #time.sleep(2)
                    shake_switch = True
                    img1, img2 = shaker.get_minmax_image()
                    cv2.imwrite(self.out_dir + pure_video_name + '_max.jpg',
                                img1)
                    cv2.imwrite(self.out_dir + pure_video_name + '_min.jpg',
                                img2)
                    f.write(str(frame_cnt))
                    scc = SkinColorClassifier(img1, img2)
                start_time = time.time()
                mask = scc.mask_image(curr_frame)
                curr_frame, finger_cnt = count_finger(curr_frame, mask)
                print(time.time() - start_time)
            else:
                mask = sd.detect_skin(curr_frame)
                decision_cnt += 1

            if shake_switch is False:
                mask, shake_ended = \
                        shaker.shake_detect(prev_frame, curr_frame)
            cv2.imshow('mask', mask)
            if self.save_video:
                out.write(cv2.cvtColor(mask,\
                        cv2.COLOR_GRAY2BGR))

            prev_frame = curr_frame

            curr_frame = vis.visualize(curr_frame, finger_cnt, decision_cnt)
            cv2.imshow('frame', curr_frame)
            k = cv2.waitKey(5) & 0xFF
            if k == 27:
                break

        f.write('\n')
        f.close()
        if self.save_video:
            out.release()
        plt.plot(shaker.yhistory)
        plt.ylabel('avg y')

        plt.plot(shaker.smoothed)
        plt.ylabel('smoothed')
        plt.savefig(self.out_dir + pure_video_name + "_plot.png")
        plt.clf()

        plt.plot(cnt_list)
        plt.savefig(self.out_dir + pure_video_name + \
                "_finger_plot.png")
        plt.clf()

        cap.release()
        cv2.destroyAllWindows()
        return cnt_list