def test_plot_random():
    array_shape = (24, 32)
    min_value = 30
    max_value = 40
    plot = init_heatmap("Heatmap", array_shape, min_value, max_value)

    while True:
        frame = np.around(np.random.random(array_shape) * 10 + 30, decimals=2)
        update_heatmap(frame, plot)
def optical_flow_lk(files, track_length=10, detect_interval=5):
    print("Performing Lucas-Kanade Optical Flow")
    plot = get_init_heatmap_plot()

    # params for ShiTomasi corner detection
    feature_params = dict(maxCorners=4,
                          qualityLevel=0.2,
                          minDistance=6,
                          blockSize=4)
    # Parameters for lucas kanade optical flow
    lk_params = dict(winSize=(3, 3),
                     maxLevel=3,
                     criteria=(cv.TERM_CRITERIA_EPS | cv.TERM_CRITERIA_COUNT,
                               10, 0.03))

    # Take first frame and find corners in it
    first_frame_gray = get_frame_GREY(files[0])
    # TODO: instead of using good features to track, possibly just use contour points directly
    prevPts = cv.goodFeaturesToTrack(first_frame_gray,
                                     mask=None,
                                     **feature_params)
    color = np.random.randint(0, 255, (100, 3))
    counter = 1
    prevImg = first_frame_gray
    while counter < len(files):
        frame = get_frame_GREY(files[counter])
        nextImg = frame.copy()
        update_heatmap(get_frame(files[counter]), plot)
        nextPts, status, err = cv.calcOpticalFlowPyrLK(prevImg, nextImg,
                                                       prevPts, None,
                                                       **lk_params)
        displacement = nextPts - prevPts
        if (abs(displacement) > 3).any():
            print(displacement)
            plt.xlabel("Displacement: {}".format(displacement))
        else:
            plt.xlabel("Displacement in x/y lower than 3 ")
        if nextPts is None:
            print("Target not moving")
            prevPts = cv.goodFeaturesToTrack(frame,
                                             mask=None,
                                             **feature_params)
            nextPts, status, err = cv.calcOpticalFlowPyrLK(
                prevImg, nextImg, prevPts, None, **lk_params)

        # Select good points
        # each element of the vector is set to 1 if the flow for the corresponding features has been found, otherwise, it is set to 0.
        good_new = nextPts[status == 1]
        good_old = prevPts[status == 1]

        # Now update the previous frame and previous points
        prevImg = nextImg.copy()
        prevPts = good_new.reshape(-1, 1, 2)
        counter += 1
def test_plot(files):
    array_shape = (24, 32)
    min_value = 30
    max_value = 40
    plot = init_heatmap("Heatmap",
                        array_shape,
                        min_value,
                        max_value,
                        debug=True)
    for f in files:
        frame = get_frame(f)
        update_heatmap(frame, plot)
def test_plot_without_labels(files):
    array_shape = (24, 32)
    min_value = 25
    max_value = 40
    plot = init_heatmap("Heatmap",
                        array_shape,
                        min_value,
                        max_value,
                        debug=False)
    for i in range(len(files)):
        frame = get_frame(files[i])
        update_heatmap(frame, plot)
        create_folder_if_absent("testpics")
        plt.savefig("testpics/{}.png".format(i))
def save_serial_output(forever, num_samples=3000, mode=DEBUG_MODE):
    """
    Save I2C output 
    """

    counter = 0

    to_read = forever or counter < num_samples
    plot = None
    if mode == DEBUG_MODE:
        min_temp = 28
        max_temp = 40
        plot = init_heatmap("MLX90640 Heatmap", ARRAY_SHAPE, min_temp,
                            max_temp)
    elif mode == WRITE_MODE:
        create_folder_if_absent(DATA_PATH)

    while to_read:
        try:
            frame = np.zeros(
                (24 * 32))  #  initialise array for storing temp values
            mlx.getFrame(
                frame
            )  #  get the mlx values and put them into the array we just created
            array = np.array(frame)
            print(array)
            if array.shape[0] == ARRAY_SHAPE[0] * ARRAY_SHAPE[1]:
                df = np.reshape(array.astype(float), ARRAY_SHAPE)
                df = interpolate_values(df)
                max_temp = np.amax(df)
                min_temp = np.amin(df)

                if mode == DEBUG_MODE:
                    print("Updating Heatmap...", "[{}]".format(counter))
                    update_heatmap(df, plot)

                elif mode == WRITE_MODE:
                    print("Saving npy object...", "[{}]".format(counter))
                    save_npy(df, DATA_PATH, directory_sort=DATA_DIR_SORT)

                elif mode == PUBLISH_MODE:
                    pass

            counter += 1

        except KeyboardInterrupt:
            raise
        except Exception as e:
            print(e)
            break
Exemplo n.º 6
0
def save_serial_output(forever, num_samples=3000, mode=DEBUG_MODE):
    """
    Save serial output from arduino 
    """
    ser = serial.Serial(SERIAL_PORT, BAUD_RATE)
    ser.reset_output_buffer()
    counter = 0

    to_read = forever or counter < num_samples
    plot = None
    if mode == DEBUG_MODE:
        min_temp = 28
        max_temp = 40
        plot = init_heatmap("MLX90640 Heatmap", ARRAY_SHAPE, min_temp, max_temp)
    elif mode == WRITE_MODE:
        create_folder_if_absent(DATA_PATH)
        
    while to_read:
        try:
            ser_bytes = ser.readline()
            decoded_string = ser_bytes.decode("utf-8", errors='ignore').strip("\r\n")
            values = decoded_string.split(",")[:-1]
            array = np.array(values)    
            if array.shape[0] == ARRAY_SHAPE[0] * ARRAY_SHAPE[1]:
                df = np.reshape(array.astype(float), ARRAY_SHAPE)
                df = interpolate_values(df)
                max_temp = np.amax(df)
                min_temp = np.amin(df)

                if mode == DEBUG_MODE:
                    print("Updating Heatmap...", "[{}]".format(counter))
                    update_heatmap(df, plot)

                elif mode == WRITE_MODE:
                    print("Saving npy object...", "[{}]".format(counter))
                    save_npy(df, DATA_PATH, directory_sort=DATA_DIR_SORT)

                elif mode == PUBLISH_MODE:
                    pass
                
            counter += 1

        except KeyboardInterrupt:
            raise
        except Exception as e:
            print(e)
            break
def test_get_centroid_area_history(files):
    area_counter, area_movement_counter, centroid_area_numbers, annotated_images = get_centroid_area_history(files)
    assert len(centroid_area_numbers) == len(annotated_images)
        
    print(area_counter)
    print(area_movement_counter)
    
    contours_plot = init_heatmap("Detected Contours", (24,32), show=True)
    track_plot = init_heatmap("Tracked Centroid", (2, 4), min_value=0, max_value=1, show=True)
    
    
    area_number_frames = []
    for i in range(len(centroid_area_numbers)):
        area_number = centroid_area_numbers[i]
        frame = np.zeros(8)
        frame[area_number] = 1
        frame = frame.reshape((2,4))
        update_heatmap(frame, track_plot)
        update_heatmap(annotated_images[i], contours_plot)
def naive_detection_from_files(data_path, startIndex=None, endIndex=None):
    heatmap_plot = get_init_heatmap_plot()
    likelihood_plot = get_init_likelihood_plot()
    files = get_all_files(data_path)
    if startIndex == None:
        startIndex = 0
    if endIndex == None:
        endIndex = len(files)
    print(startIndex, endIndex)
    for i in range(startIndex, endIndex):
        frame = get_frame(files[i])
        areas_person_is_in = naive_detection_by_frame(frame)
        likelihood_array = [[
            areas_person_is_in[i]["likelihood"] for i in range(4)
        ], [areas_person_is_in[i]["likelihood"] for i in range(4, 8)]]

        # if debugging with plot view
        update_heatmap(frame, heatmap_plot)
        update_heatmap(likelihood_array, likelihood_plot)