Exemplo n.º 1
0
def simplify(multi_geometry, single_geometry, length, max_vertices):
    '''Function that takes in a polygon and returns a simplified version taking
    the convex hull of the region.'''

    # Convert to GeoPandas Series and perform convex hull operation
    polygons = gpd.GeoSeries(multi_geometry)
    polygons_hull = polygons.convex_hull.item()

    # Format into CMR queryable polygon
    complex_hull_cmr_poly = format_polygon(polygons_hull)

    #######################

    # Map the reduction of vertices to a tanh function
    reduction = int(max_vertices * np.tanh((1/max_vertices) * length))

    # Initial simplification
    points = list(single_geometry.exterior.coords)
    simplifier = vw.Simplifier(points)

    visval_poly_points = simplifier.simplify(number=reduction)
    visval_poly = Polygon(visval_poly_points)
    visval_cmr_poly = format_polygon(visval_poly)

    ######################

    bbox = str(polygons_hull.bounds)
    cmr_bbox = re.sub(r'[()\s+]', '', bbox)


    return complex_hull_cmr_poly, visval_cmr_poly, cmr_bbox
Exemplo n.º 2
0
    def simplify(self, thresh=None, nb_points=None):
        simplifier = vw.Simplifier(self.array)
        self.simplified = simplifier.simplify(threshold=thresh)
        if len(self.simplified) <= 2:
            self.simplified = None

        if nb_points is not None:
            if len(self.array) <= nb_points:
                self.simplified = self.array.copy()
            elif self.simplified is None or len(self.simplified) <= nb_points:
                self.simplified = simplifier.simplify(number=nb_points)
            else:
                pass

        # Checking the geometry and attempting to resolve it with shapely
        self.simplified = resolve_geometry(self.simplified)
        # poly = geometry.Polygon(self.simplified)
        # if not poly.is_valid:
        #     poly = poly.buffer(0)
        #     try:
        #         x, y = poly.exterior.coords.xy
        #     except AttributeError:
        #         # We have a MultiPolygon! We just select the biggest one.
        #         poly = list(poly)
        #         poly = sorted(poly, key=lambda a: a.area)
        #         poly = poly[0]
        #         x, y = poly.exterior.coords.xy
        #
        #     poly = list(zip(x, y))
        #     poly = [list(a) for a in poly]
        #     self.simplified = np.array(poly)
        print(len(self.simplified))
Exemplo n.º 3
0
def process_json(path):
    print(path)

    with open(path, 'r', encoding='utf-8') as f:
        data = json.loads(f.read())

    out = []
    for feature in data['features']:
        if not feature['geometry']['coordinates']:
            continue
        #print(feature)

        admin2_code = feature['id']
        try:
            ja, en = id_to_city_names[admin2_code]
        except KeyError:
            import traceback
            traceback.print_exc()
            continue

        coordinates_out = []
        for i_coords in feature['geometry']['coordinates']:
            simplifier = vw.Simplifier(i_coords)
            simplified = ([list(i)
                           for i in simplifier.simplify(ratio=0.02)]  # or
                          #[list(i) for i in simplifier.simplify(number=4)]
                          )

            if len(simplified) < 3:
                # Probably can ignore
                continue
            coordinates_out.append(simplified)

        out.append({
            "type": "Feature",
            "geometry": {
                "type": "Polygon",
                "coordinates": coordinates_out
            },
            "properties": {
                'admin2_code': admin2_code,
                'ja': ja,
                'en': en
            }
        })
    return out
Exemplo n.º 4
0
def runtest(img,model,dataset,filename,name):

	import json
	# image=img
	image=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
	# print(image.shape,"image shape1")
	image,_,scale,scale1,padding,_=utils.resize_image(image,min_dim=256, max_dim=1024)
	# print(scale, "  ", scale1)
	results = model.detect([image], verbose=1)
	# print("iii")
	ax = get_ax(1)
	# print("iiii")
	r = results[0]
	# print(image.shape,"image shape before contours")
	ccc,contours=visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], 
	                            dataset.class_names, r['scores'], ax=ax,
	                            title="Predictions",show_bbox=False,show_mask=True)
	# print(len(contours))
	arr = np.array(contours)
	# print(arr[0][0][0][0],"shape")

	# print(contours[0][0],"contours")
	# print(contours[0])
	cls=r['class_ids']
	classes = ['Background','Hole(Virtual)','Hole(Physical)','Character Line Segment',
	           'Physical Degradation','Page Boundary','Character Component','Picture',
	           'Decorator','Library Marker','Boundary Line']

	strt="""
	{
	  "_via_settings": {
	    "ui": {
	      "annotation_editor_height": 30,
	      "annotation_editor_fontsize": 0.6000000000000001,
	      "leftsidebar_width": 18,
	      "image_grid": {
	        "img_height": 80,
	        "rshape_fill": "none",
	        "rshape_fill_opacity": 0.3,
	        "rshape_stroke": "yellow",
	        "rshape_stroke_width": 2,
	        "show_region_shape": true,
	        "show_image_policy": "all"
	      },
	      "image": {
	        "region_label": "region_id",
	        "region_label_font": "10px Sans"
	      }
	    },
	    "core": {
	      "buffer_size": 18,
	      "filepath": {},
	      "default_filepath": ""
	    },
	    "project": {
	      "name": "corrected_3"
	    }
	  },
	  "_via_img_metadata": {
	    "": {
	      "filename": \""""+str(filename)+"""\",
	      "size": -1,
	      "regions": [
	"""

	end="""
	],
	      "file_attributes": {}
	    }
	  },
	  "_via_attributes": {
	    "region": {
	      "Spatial Annotation": {
	        "type": "dropdown",
	        "description": "",
	        "options": {
	          "Hole(Virtual)": "",
	          "Hole(Physical)": "",
	          "Character Line Segment": "",
	          "Boundary Line": "",
	          "Physical Degradation": "",
	          "Page Boundary": "",
	          "Character Component": "",
	          "Picture": "",
	          "Decorator": "",
	          "Library Marker": ""
	        },
	        "default_options": {}
	      },
	      "Comments": {
	        "type": "text",
	        "description": "",
	        "default_value": ""
	      }
	    },
	    "file": {}
	  },
	  "file": \""""+str(name)+"""\"
	}
	"""

	rgns=""
	# print(scale,"scale")
	# print(scale1,"scale1")
	arr1 = np.zeros(11)
	count1 = np.zeros(11)
	avg1 = np.zeros(11)
	# print("intial")
	# print(arr1,"arr")
	# print(count1,"count")
	ROOT_DIR = os.path.abspath("./Instance-segmentation-master")
	perimeter_path = ROOT_DIR+"/main/doc/"
	loaded_avg = np.load(perimeter_path+'perimeter.npy')
	# arr = arr
	# count = count
	for i in range(len(cls)):
		if i!=(-1):
			
			try:
				k = np.array(contours[i][0])
			except:
				#error_out = """{
				#"error": ["1"]				
				#}"""
				#error_out = {}
				#error_out['error'] = 1
				return []

			# d = k[0][0]
			# print(type(d),"d")
			# print(scale,"scale")
			# k=(k *(1/scale))
			k=k.astype(int)
			arr1=np.array(arr1)
			# count=count
			
			# print(k[0][0])
			# k[:,0] = np.rint(k[:,0] * (1/ scale))
			# k[:,1] = np.rint(k[:,1] * (1/ scale1))
			# d = k[0][0]
			# print(type(d),"d")
			k= np.array(k)
			# print(k.shape,"kshape")
			# print(k," ith k",i)
			ln=len(contours[i][0])
			mid = int(ln/2)
			# k1=k[0:mid,:]
			# k2=k[mid:ln-1,:]
			k1=k[0:ln-1,:]
			# print(k1,"ith k1",i)
			# print(k1.shape,"k1shape")
			# print(k2,"ith k2",i)
			# print(k2.shape,"k2shape")
			# from rdp import rdp
			# from simplification.cutil import simplify_coords, simplify_coordsvw
			# from polysimplify import VWSimplifier
			import visvalingamwyatt as vw
			# simplifier = vw.Simplifier(points)

# Simplify by percentage of points to keep
      # simplifier.simplify(ratio=0.5)
			simplifier1 = vw.Simplifier(k1)
			# simplifier.simplify(ratio=0.5)
			n1=int(0.020*k1.shape[0])
			
			# if(n1<4):
			# 	n1=4

			# perimeter
			perimeter = Polygon(k1).length
			# print(perimeter,"pppppppppppp")

			sub_loaded =  np.absolute(loaded_avg - perimeter)

			index_min = np.argmin(sub_loaded)
			# print(sub_loaded ,"subloaded")
			# print(index_min,"index_min")
			# if it is BG
			if(index_min)==0:
				n1=int(0.020*k1.shape[0])
			#if it is H-V
			if(index_min)==1:
				n1=int(0.040*k1.shape[0])

			#if it is H
			if(index_min)==2:
				n1=int(0.040*k1.shape[0])
			# cls
			if(index_min)==3:
				n1=int(0.020*k1.shape[0])
			# pd
			if(index_min)==4:
				n1=int(0.030*k1.shape[0])
			# pb
			if(index_min)==5:
				n1=int(0.010*k1.shape[0])
			# cc
			if(index_min)==6:
				n1=int(0.040*k1.shape[0])
			# p
			if(index_min)==7:
				n1=int(0.040*k1.shape[0])
			# d
			if(index_min)==8:
				n1=int(0.040*k1.shape[0])
			# lm
			if(index_min)==9:
				n1=int(0.040*k1.shape[0])
			# bl
			if(index_min)==10:
				n1=int(0.020*k1.shape[0])

			if n1<4:
				n1=4
			


			
			# print(n1,"n1")
			# n2=int(0.025*k2.shape[0])
			# print(n2,"n2")


			
			rdpk1=np.array(simplifier1.simplify(number=n1))
			# simplifier2 = vw.Simplifier(k2)
			# simplifier.simplify(ratio=0.5)
			# rdpk2=np.array(simplifier2.simplify(number=n2))
			# rdpk1= rdp(k1,epsilon=1)
			# rdpk2= rdp(k2,epsilon=1)
			# print(rdpk1,"ith rdpk1",i)
			# print(rdpk1.shape,"rdpk1shape")
			# print(rdpk2,"ith rdpk2",i)
			# print(rdpk2.shape,"rdpk2shape")
			# final= np.concatenate((rdpk1, rdpk2), axis=0)
			final=rdpk1
			# print(final.shape[0],"finalshape")
			# print(final[0][0],"final")
			i = int(i)
			finallist = np.array(final).tolist()
			# perimeter
			# perimeter = Polygon(final).length
			# 
			# sub_loaded =  abs.absolute(loaded_avg - perimeter)

			# print(perimeter,"perimeter of i - ", i)
			# print(cls[i])
			arr1[cls[i]] += perimeter
			count1[cls[i]] += 1
			avg1[cls[i]] = (arr1[cls[i]]/count1[cls[i]])
			# print(arr1,"arr after i - ",i)
			# print(count1,"count after i - ",i)
			# print(avg1,"avg after i",i)

			# storingarray(arr,count)
			length=final.shape[0]
			str1=""
			str2=""
			for j in range(length):

				str1+=str(int((final[j][0]-padding[0][0])*(1/scale)))
				
				str1+=","
				str1+='\n'
			for j in range(length):

				str2+=str(int((final[j][1]-padding[1][0])*(1/scale)))
				# g=0
				str2+=","
				str2+='\n'
			str1=str1[:-2]
			str2=str2[:-2]
			rg="""{
	          "shape_attributes": {
	            "name": "polygon",
	            "all_points_x": [ """+ str2+"""],
	            "all_points_y": ["""+str1+ """]
	          },
	          "region_attributes": {
	            "Spatial Annotation":\""""+str(classes[cls[i]])+"""\",
	            "Comments": ""
	          },
	          "timestamp": {
	            "StartingTime": 6016533,
	            "EndTime": 6035060
	          }
	        }"""
			
			if(i!=len(cls)-1):
				rg+=","
			rgns+=rg

	    # if(i!=len(cls)-1):

	    #   rg+=","
	    # rgns+=rg
	print("done")

	# for updating the perimeter values
	# print(np.load('perimeter.npy'),"old")
	# loaded_avg = np.load('perimeter.npy')
	new_avg= np.zeros(11)
	for i in range(11):
		if((int(count1[i])!=0) and (int(loaded_avg[i])!=0)):
			

			new_avg[i]= (loaded_avg[i] + avg1[i])
			new_avg[i] = new_avg[i] / 2
			
		else:
			
			new_avg[i] = loaded_avg[i] + avg1[i]

	
	np.save(perimeter_path+'perimeter.npy', new_avg)
	# print(np.load('perimeter.npy'),"new")
	#end of updating the perimeter values
				
  
				
				


	# k=np.array(contours)
	# print(k,"k")
	# print(k.shape[0],"shape1")


	# for i in range(len(cls)):

	#     str1=""
	#     str2=""
	#     ln=len(contours[i][0])
			
	#     print(ln,"lrn")
	#     for j in range(ln):

	#         if(j%20==0):
	#             str1+=str(contours[i][0][j][0]-padding[0][0])
	#             str1+=','
	#             str1+='\n'
	#     for j in range(ln):
	#         if(j%20==0):
	#             str2+=str(contours[i][0][j][1]-padding[1][0])
	#             str2+=','
	#             str2+='\n'
	#     str1=str1[:-2]
	#     str2=str2[:-2]
	    # rg="""{
	    #       "shape_attributes": {
	    #         "name": "polygon",
	    #         "all_points_x": [ """+ str2+"""],
	    #         "all_points_y": ["""+str1+ """]
	    #       },
	    #       "region_attributes": {
	    #         "Spatial Annotation":\""""+str(classes[cls[i]])+"""\",
	    #         "Comments": ""
	    #       },
	    #       "timestamp": {
	    #         "StartingTime": 6016533,
	    #         "EndTime": 6035060
	    #       }
	    #     }"""
	    # if(i!=len(cls)-1):
	    #     rg+=","
	    # rgns+=rg

	with open (perimeter_path+'save.json','w') as f:
	    f.write(strt)
	    f.write(rgns)
	    f.write(end)
	h, w = image.shape[:2]
	image=image[padding[0][0]:h-padding[0][1],padding[1][0]:w-padding[1][1]]
	plt.savefig(OUTPUTPATH,bbox_inches='tight')
	# print(arr)
	# print(count)


	#final_output = strt + rgns + end
	final_output = '{"output": [' + rgns + '], "file": "' + str(name) + '", "url": "' + str(filename) + '"}'
	#print(final_output)
	return final_output
def runtest(img,model,dataset):

	import json
	# image=img
	image=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
	print(image.shape,"image shape1")
	image,_,scale,scale1,padding,_=utils.resize_image(image,min_dim=256, max_dim=1024)
	print(scale, "  ", scale1)
	results = model.detect([image], verbose=1)
	ax = get_ax(1)
	r = results[0]
	print(image.shape,"image shape before contours")
	ccc,contours=visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], 
	                            dataset.class_names, r['scores'], ax=ax,
	                            title="Predictions",show_bbox=False,show_mask=True)
	print(len(contours))
	arr = np.array(contours)
	print(arr[0][0][0][0],"shape")

	# print(contours[0][0],"contours")
	# print(contours[0])
	cls=r['class_ids']
	classes = ['Background','Hole(Virtual)','Hole(Physical)','Character Line Segment',
	           'Physical Degradation','Page Boundary','Character Component','Picture',
	           'Decorator','Library Marker','Boundary Line']

	strt="""
	{
	  "_via_settings": {
	    "ui": {
	      "annotation_editor_height": 30,
	      "annotation_editor_fontsize": 0.6000000000000001,
	      "leftsidebar_width": 18,
	      "image_grid": {
	        "img_height": 80,
	        "rshape_fill": "none",
	        "rshape_fill_opacity": 0.3,
	        "rshape_stroke": "yellow",
	        "rshape_stroke_width": 2,
	        "show_region_shape": true,
	        "show_image_policy": "all"
	      },
	      "image": {
	        "region_label": "region_id",
	        "region_label_font": "10px Sans"
	      }
	    },
	    "core": {
	      "buffer_size": 18,
	      "filepath": {},
	      "default_filepath": ""
	    },
	    "project": {
	      "name": "corrected_3"
	    }
	  },
	  "_via_img_metadata": {
	    "": {
	      "filename": \""""+str(filename)+"""\",
	      "size": -1,
	      "regions": [
	"""

	end="""
	],
	      "file_attributes": {}
	    }
	  },
	  "_via_attributes": {
	    "region": {
	      "Spatial Annotation": {
	        "type": "dropdown",
	        "description": "",
	        "options": {
	          "Hole(Virtual)": "",
	          "Hole(Physical)": "",
	          "Character Line Segment": "",
	          "Boundary Line": "",
	          "Physical Degradation": "",
	          "Page Boundary": "",
	          "Character Component": "",
	          "Picture": "",
	          "Decorator": "",
	          "Library Marker": ""
	        },
	        "default_options": {}
	      },
	      "Comments": {
	        "type": "text",
	        "description": "",
	        "default_value": ""
	      }
	    },
	    "file": {}
	  }
	}
	"""

	rgns=""
	print(scale,"scale")
	print(scale1,"scale1")
	for i in range(len(cls)):
		if i!=(-1):
			k = np.array(contours[i][0])
			# d = k[0][0]
			# print(type(d),"d")
			# print(scale,"scale")
			# k=(k *(1/scale))
			k=k.astype(int)
			
			# print(k[0][0])
			# k[:,0] = np.rint(k[:,0] * (1/ scale))
			# k[:,1] = np.rint(k[:,1] * (1/ scale1))
			# d = k[0][0]
			# print(type(d),"d")
			k= np.array(k)
			print(k.shape,"kshape")
			# print(k," ith k",i)
			ln=len(contours[i][0])
			mid = int(ln/2)
			# k1=k[0:mid,:]
			# k2=k[mid:ln-1,:]
			k1=k[0:ln-1,:]
			# print(k1,"ith k1",i)
			# print(k1.shape,"k1shape")
			# print(k2,"ith k2",i)
			# print(k2.shape,"k2shape")
			from rdp import rdp
			# from simplification.cutil import simplify_coords, simplify_coordsvw
			# from polysimplify import VWSimplifier
			import visvalingamwyatt as vw
			# simplifier = vw.Simplifier(points)

# Simplify by percentage of points to keep
      # simplifier.simplify(ratio=0.5)
			simplifier1 = vw.Simplifier(k1)
			# simplifier.simplify(ratio=0.5)
			n1=int(0.020*k1.shape[0])
			# print(n1,"n1")
			# n2=int(0.025*k2.shape[0])
			# print(n2,"n2")
			rdpk1=np.array(simplifier1.simplify(number=n1))
			# simplifier2 = vw.Simplifier(k2)
			# simplifier.simplify(ratio=0.5)
			# rdpk2=np.array(simplifier2.simplify(number=n2))
			# rdpk1= rdp(k1,epsilon=1)
			# rdpk2= rdp(k2,epsilon=1)
			# print(rdpk1,"ith rdpk1",i)
			# print(rdpk1.shape,"rdpk1shape")
			# print(rdpk2,"ith rdpk2",i)
			# print(rdpk2.shape,"rdpk2shape")
			# final= np.concatenate((rdpk1, rdpk2), axis=0)
			final=rdpk1
			# print(final.shape[0],"finalshape")
			print(final[0][0],"final")
			length=final.shape[0]
			str1=""
			str2=""
			for j in range(length):

				str1+=str(int((final[j][0]-padding[0][0])*(1/scale)))
				
				str1+=","
				str1+='\n'
			for j in range(length):

				str2+=str(int((final[j][1]-padding[1][0])*(1/scale)))
				# g=0
				str2+=","
				str2+='\n'
			str1=str1[:-2]
			str2=str2[:-2]
			rg="""{
	          "shape_attributes": {
	            "name": "polygon",
	            "all_points_x": [ """+ str2+"""],
	            "all_points_y": ["""+str1+ """]
	          },
	          "region_attributes": {
	            "Spatial Annotation":\""""+str(classes[cls[i]])+"""\",
	            "Comments": ""
	          },
	          "timestamp": {
	            "StartingTime": 6016533,
	            "EndTime": 6035060
	          }
	        }"""
			
			if(i!=len(cls)-1):
				rg+=","
			rgns+=rg

	    # if(i!=len(cls)-1):

	    #   rg+=","
	    # rgns+=rg
				
  
				
				


	# k=np.array(contours)
	# print(k,"k")
	# print(k.shape[0],"shape1")


	# for i in range(len(cls)):

	#     str1=""
	#     str2=""
	#     ln=len(contours[i][0])
			
	#     print(ln,"lrn")
	#     for j in range(ln):

	#         if(j%20==0):
	#             str1+=str(contours[i][0][j][0]-padding[0][0])
	#             str1+=','
	#             str1+='\n'
	#     for j in range(ln):
	#         if(j%20==0):
	#             str2+=str(contours[i][0][j][1]-padding[1][0])
	#             str2+=','
	#             str2+='\n'
	#     str1=str1[:-2]
	#     str2=str2[:-2]
	    # rg="""{
	    #       "shape_attributes": {
	    #         "name": "polygon",
	    #         "all_points_x": [ """+ str2+"""],
	    #         "all_points_y": ["""+str1+ """]
	    #       },
	    #       "region_attributes": {
	    #         "Spatial Annotation":\""""+str(classes[cls[i]])+"""\",
	    #         "Comments": ""
	    #       },
	    #       "timestamp": {
	    #         "StartingTime": 6016533,
	    #         "EndTime": 6035060
	    #       }
	    #     }"""
	    # if(i!=len(cls)-1):
	    #     rg+=","
	    # rgns+=rg

	with open ('save.json','w') as f:
	    f.write(strt)
	    f.write(rgns)
	    f.write(end)
	h, w = image.shape[:2]
	image=image[padding[0][0]:h-padding[0][1],padding[1][0]:w-padding[1][1]]
	plt.savefig(OUTPUTPATH,bbox_inches='tight')
    def function(year, args=args):
        extensions = ['nbk', 'gk']
        language = ['de', 'en', 'fr']
        file_type = ['gif']
        origin_paths = []
        url = "https://www.slf.ch/fileadmin/user_upload/import/lwdarchiv/public"
        urls = []

        # for y in years:
        y = year
        for ext in extensions:
            for lan in language:
                for f_type in file_type:
                    origin = os.path.join(
                        *[args.maps_directory, y, ext, lan,
                          f_type])  #,"*."+f_type])

                    if (Path(origin).exists()):
                        origin_paths.append(
                            os.path.join(*[origin, "*." + f_type]))
                        urls.append("/".join([url, y, ext, lan, f_type]))

        for i, origin in enumerate(origin_paths):
            for file_map in glob.glob(origin):
                basename = os.path.basename(file_map)

                filename = '{}.json'.format(
                    os.path.splitext(os.path.basename(file_map))[0])
                destination = os.path.join(args.out_path, filename)
                file_url = urls[i] + "/" + basename

                if Path(destination).exists() and not args.f:
                    print('Skip {} because {} already exists'.format(
                        file_map, destination))
                    continue

                img = Image.open(file_map)
                img = img.convert('RGB')
                img_arr = np.array(img)

                img_no_gray = remove_grey(img_arr)
                color_map = build_color_map(img_no_gray, [white] + color_scale)
                img_projected = replace_color(img_no_gray, color_map)

                # load mask of this size
                try:
                    binary_mask, landmarks_pix = open_mask(*img_arr.shape[:2])
                except FileNotFoundError:
                    print('Missing mask "{}x{}.gif" for file "{}"'.format(
                        *img_arr.shape[:2], file_map),
                          file=sys.stderr)
                    continue

                # keep useful colors
                regions_only = keep_colors(img_projected, color_scale)

                # clip the binary mask to remove color key
                regions_only[~binary_mask] = 255
                regions_only = Image.fromarray(regions_only).convert('RGB')
                smoothed = regions_only.filter(ImageFilter.MedianFilter(7))

                pix = np.array(list(map(numpify, landmarks_pix.values())))
                coord = np.array(list(map(numpify, landmarks_pix.keys())))

                # add 1 bias raw
                pix_ext = np.vstack([np.ones((1, pix.shape[0])), pix.T])
                coord_ext = np.vstack([np.ones((1, pix.shape[0])), coord.T])

                T = np.linalg.lstsq(pix_ext.T, coord_ext.T)[0]

                def transform_pix2map(points):
                    """n x 2 array"""
                    points_ext = np.hstack(
                        [np.ones((points.shape[0], 1)), points])
                    points_map = points_ext.dot(T)
                    return points_map[:, 1:]

                geo_json = {"type": "FeatureCollection", "features": []}

                for danger_level, color in enumerate(
                    [green, yellow, orange, red]):
                    for contour in color_contours(smoothed, color):
                        contour_right = contour.copy()
                        contour_right[:, 0] = contour[:, 1]
                        contour_right[:, 1] = contour[:, 0]
                        contour_right = transform_pix2map(contour_right)
                        simplifier = vw.Simplifier(contour_right)
                        contour_right = simplifier.simplify(
                            threshold=SMOOTHING_THRESHOLD)
                        geo_json['features'].append({
                            "type": "Feature",
                            "properties": {
                                "date":
                                ".".join([
                                    basename[6:8], basename[4:6], basename[0:4]
                                ]),
                                "danger_level":
                                danger_level + 1,
                                "url":
                                file_url
                            },
                            "geometry": {
                                "type":
                                "Polygon",
                                "coordinates":
                                [list(reversed(contour_right.tolist()))]
                            }
                        })

                with open(destination, 'w') as f:
                    print('{} -> {}'.format(file_map, destination))
                    json.dump(geo_json, f)
Exemplo n.º 7
0
 def wyatt(self, points, number_of_wp):
     simplifier = vw.Simplifier(points[:,3:].astype(np.float))
     simplified_path = simplifier.simplify(number_of_wp)
     return simplified_path