def test_load_pretrained(self):
     tempdir = tempfile.gettempdir()
     model_config = config_lib.get_testing_config()
     test_utils.create_checkpoint(model_config, f'{tempdir}/testing.npz')
     model = models.VisionTransformer(num_classes=2, **model_config)
     variables = model.init(
         jax.random.PRNGKey(0),
         inputs=jnp.ones([1, 32, 32, 3], jnp.float32),
         train=False,
     )
     checkpoint.load_pretrained(pretrained_path=f'{tempdir}/testing.npz',
                                init_params=variables['params'],
                                model_config=model_config)
 def test_load_pretrained(self):
     create_checkpoint("testing", "./testing.npz")
     model = models.KNOWN_MODELS["testing"].partial(num_classes=2)
     _, params = model.init_by_shape(jax.random.PRNGKey(0),
                                     [((1, 32, 32, 3), jnp.float32)])
     logger = logging.getLogger()
     logger.setLevel(logging.INFO)
     checkpoint.load_pretrained(
         pretrained_path="testing.npz",
         init_params=params,
         model_config=models.CONFIGS["testing"],
         logger=logger,
     )
Exemplo n.º 3
0
def main(args):
    logdir = os.path.join(args.logdir, args.name)
    logger = logging.setup_logger(logdir)
    logger.info(args)

    logger.info(f'Available devices: {jax.devices()}')

    # Setup input pipeline
    dataset_info = input_pipeline.get_dataset_info(args.dataset, 'train')

    ds_train = input_pipeline.get_data(dataset=args.dataset,
                                       mode='train',
                                       repeats=None,
                                       mixup_alpha=args.mixup_alpha,
                                       batch_size=args.batch,
                                       shuffle_buffer=args.shuffle_buffer,
                                       tfds_data_dir=args.tfds_data_dir,
                                       tfds_manual_dir=args.tfds_manual_dir)
    batch = next(iter(ds_train))
    logger.info(ds_train)
    ds_test = input_pipeline.get_data(dataset=args.dataset,
                                      mode='test',
                                      repeats=1,
                                      batch_size=args.batch_eval,
                                      tfds_data_dir=args.tfds_data_dir,
                                      tfds_manual_dir=args.tfds_manual_dir)
    logger.info(ds_test)

    # Build VisionTransformer architecture
    model = models.KNOWN_MODELS[args.model]
    VisionTransformer = model.partial(num_classes=dataset_info['num_classes'])
    _, params = VisionTransformer.init_by_shape(
        jax.random.PRNGKey(0),
        # Discard the "num_local_devices" dimension for initialization.
        [(batch['image'].shape[1:], batch['image'].dtype.name)])

    pretrained_path = os.path.join(args.vit_pretrained_dir,
                                   f'{args.model}.npz')
    params = checkpoint.load_pretrained(
        pretrained_path=pretrained_path,
        init_params=params,
        model_config=models.CONFIGS[args.model],
        logger=logger)

    # pmap replicates the models over all TPUs/GPUs
    vit_fn_repl = jax.pmap(VisionTransformer.call)
    update_fn_repl = make_update_fn(VisionTransformer.call, args.accum_steps)

    # Create optimizer and replicate it over all TPUs/GPUs
    opt = momentum_clip.Optimizer(
        dtype=args.optim_dtype,
        grad_norm_clip=args.grad_norm_clip).create(params)
    opt_repl = flax_utils.replicate(opt)

    # Delete referenes to the objects that are not needed anymore
    del opt
    del params

    def copyfiles(paths):
        """Small helper to copy files to args.copy_to using tf.io.gfile."""
        if not args.copy_to:
            return
        for path in paths:
            to_path = os.path.join(args.copy_to, args.name,
                                   os.path.basename(path))
            tf.io.gfile.makedirs(os.path.dirname(to_path))
            tf.io.gfile.copy(path, to_path, overwrite=True)
            logger.info(f'Copied {path} to {to_path}.')

    total_steps = args.total_steps or (
        input_pipeline.DATASET_PRESETS[args.dataset]['total_steps'])

    # Prepare the learning-rate and pre-fetch it to device to avoid delays.
    lr_fn = hyper.create_learning_rate_schedule(total_steps, args.base_lr,
                                                args.decay_type,
                                                args.warmup_steps)
    lr_iter = hyper.lr_prefetch_iter(lr_fn, 0, total_steps)
    update_rngs = jax.random.split(jax.random.PRNGKey(0),
                                   jax.local_device_count())

    # Run training loop
    writer = metric_writers.create_default_writer(logdir, asynchronous=False)
    writer.write_hparams(
        {k: v
         for k, v in vars(args).items() if v is not None})
    logger.info('Starting training loop; initial compile can take a while...')
    t0 = time.time()

    for step, batch, lr_repl in zip(
            range(1, total_steps + 1),
            input_pipeline.prefetch(ds_train, args.prefetch), lr_iter):

        opt_repl, loss_repl, update_rngs = update_fn_repl(
            opt_repl, lr_repl, batch, update_rngs)

        if step == 1:
            logger.info(f'First step took {time.time() - t0:.1f} seconds.')
            t0 = time.time()
        if args.progress_every and step % args.progress_every == 0:
            writer.write_scalars(step, dict(train_loss=float(loss_repl[0])))
            done = step / total_steps
            logger.info(f'Step: {step}/{total_steps} {100*done:.1f}%, '
                        f'ETA: {(time.time()-t0)/done*(1-done)/3600:.2f}h')
            copyfiles(glob.glob(f'{logdir}/*'))

        # Run eval step
        if ((args.eval_every and step % args.eval_every == 0)
                or (step == total_steps)):

            accuracy_test = np.mean([
                c for batch in input_pipeline.prefetch(ds_test, args.prefetch)
                for c in (np.argmax(
                    vit_fn_repl(opt_repl.target, batch['image']), axis=2) ==
                          np.argmax(batch['label'], axis=2)).ravel()
            ])

            lr = float(lr_repl[0])
            logger.info(f'Step: {step} '
                        f'Learning rate: {lr:.7f}, '
                        f'Test accuracy: {accuracy_test:0.5f}')
            writer.write_scalars(step, dict(accuracy_test=accuracy_test,
                                            lr=lr))
            copyfiles(glob.glob(f'{logdir}/*'))

    if args.output:
        checkpoint.save(flax_utils.unreplicate(opt_repl.target), args.output)
        logger.info(f'Stored fine tuned checkpoint to {args.output}')
        copyfiles([args.output])
Exemplo n.º 4
0
def train_and_evaluate(config: ml_collections.ConfigDict, workdir: str):
  """Runs training interleaved with evaluation."""

  # Setup input pipeline
  dataset_info = input_pipeline.get_dataset_info(config.dataset, 'train')

  ds_train, ds_test = input_pipeline.get_datasets(config)
  batch = next(iter(ds_train))
  logging.info(ds_train)
  logging.info(ds_test)

  # Build VisionTransformer architecture
  model_cls = {'ViT': models.VisionTransformer,
               'Mixer': models.MlpMixer}[config.get('model_type', 'ViT')]
  model = model_cls(num_classes=dataset_info['num_classes'], **config.model)

  def init_model():
    return model.init(
        jax.random.PRNGKey(0),
        # Discard the "num_local_devices" dimension for initialization.
        jnp.ones(batch['image'].shape[1:], batch['image'].dtype.name),
        train=False)

  # Use JIT to make sure params reside in CPU memory.
  variables = jax.jit(init_model, backend='cpu')()

  model_or_filename = config.get('model_or_filename')
  if model_or_filename:
    # Loading model from repo published with  "How to train your ViT? Data,
    # Augmentation, and Regularization in Vision Transformers" paper.
    # https://arxiv.org/abs/2106.10270
    if '-' in model_or_filename:
      filename = model_or_filename
    else:
      # Select best checkpoint from i21k pretraining by final upstream
      # validation accuracy.
      df = checkpoint.get_augreg_df(directory=config.pretrained_dir)
      sel = df.filename.apply(
          lambda filename: filename.split('-')[0] == model_or_filename)
      best = df.loc[sel].query('ds=="i21k"').sort_values('final_val').iloc[-1]
      filename = best.filename
      logging.info('Selected fillename="%s" for "%s" with final_val=%.3f',
                   filename, model_or_filename, best.final_val)
    pretrained_path = os.path.join(config.pretrained_dir,
                                   f'{config.model.name}.npz')
  else:
    # ViT / Mixer papers
    filename = config.model.name

  pretrained_path = os.path.join(config.pretrained_dir, f'{filename}.npz')
  if not tf.io.gfile.exists(pretrained_path):
    raise ValueError(
        f'Could not find "{pretrained_path}" - you can download models from '
        '"gs://vit_models/imagenet21k" or directly set '
        '--config.pretrained_dir="gs://vit_models/imagenet21k".')
  params = checkpoint.load_pretrained(
      pretrained_path=pretrained_path,
      init_params=variables['params'],
      model_config=config.model)

  total_steps = config.total_steps
  lr_fn = utils.create_learning_rate_schedule(total_steps, config.base_lr,
                                              config.decay_type,
                                              config.warmup_steps)

  update_fn_repl = make_update_fn(
      apply_fn=model.apply, accum_steps=config.accum_steps, lr_fn=lr_fn)
  infer_fn_repl = jax.pmap(functools.partial(model.apply, train=False))

  # Create optimizer and replicate it over all TPUs/GPUs
  opt = momentum_clip.Optimizer(
      dtype=config.optim_dtype,
      grad_norm_clip=config.grad_norm_clip).create(params)

  initial_step = 1
  opt, initial_step = flax_checkpoints.restore_checkpoint(
      workdir, (opt, initial_step))
  logging.info('Will start/continue training at initial_step=%d', initial_step)

  opt_repl = flax.jax_utils.replicate(opt)

  # Delete references to the objects that are not needed anymore
  del opt
  del params

  # Prepare the learning-rate and pre-fetch it to device to avoid delays.
  update_rng_repl = flax.jax_utils.replicate(jax.random.PRNGKey(0))

  # Setup metric writer & hooks.
  writer = metric_writers.create_default_writer(workdir, asynchronous=False)
  writer.write_hparams(config.to_dict())
  hooks = [
      periodic_actions.Profile(logdir=workdir),
      periodic_actions.ReportProgress(
          num_train_steps=total_steps, writer=writer),
  ]

  # Run training loop
  logging.info('Starting training loop; initial compile can take a while...')
  t0 = lt0 = time.time()
  lstep = initial_step
  for step, batch in zip(
      range(initial_step, total_steps + 1),
      input_pipeline.prefetch(ds_train, config.prefetch)):

    with jax.profiler.StepTraceContext('train', step_num=step):
      opt_repl, loss_repl, update_rng_repl = update_fn_repl(
          opt_repl, flax.jax_utils.replicate(step), batch, update_rng_repl)

    for hook in hooks:
      hook(step)

    if step == initial_step:
      logging.info('First step took %.1f seconds.', time.time() - t0)
      t0 = time.time()
      lt0, lstep = time.time(), step

    # Report training metrics
    if config.progress_every and step % config.progress_every == 0:
      img_sec_core_train = (config.batch * (step - lstep) /
                            (time.time() - lt0)) / jax.device_count()
      lt0, lstep = time.time(), step
      writer.write_scalars(
          step,
          dict(
              train_loss=float(flax.jax_utils.unreplicate(loss_repl)),
              img_sec_core_train=img_sec_core_train))
      done = step / total_steps
      logging.info(f'Step: {step}/{total_steps} {100*done:.1f}%, '  # pylint: disable=logging-format-interpolation
                   f'img/sec/core: {img_sec_core_train:.1f}, '
                   f'ETA: {(time.time()-t0)/done*(1-done)/3600:.2f}h')

    # Run evaluation
    if ((config.eval_every and step % config.eval_every == 0) or
        (step == total_steps)):

      accuracies = []
      lt0 = time.time()
      for test_batch in input_pipeline.prefetch(ds_test, config.prefetch):
        logits = infer_fn_repl(
            dict(params=opt_repl.target), test_batch['image'])
        accuracies.append(
            (np.argmax(logits,
                       axis=-1) == np.argmax(test_batch['label'],
                                             axis=-1)).mean())
      accuracy_test = np.mean(accuracies)
      img_sec_core_test = (
          config.batch_eval * ds_test.cardinality().numpy() /
          (time.time() - lt0) / jax.device_count())
      lt0 = time.time()

      lr = float(lr_fn(step))
      logging.info(f'Step: {step} '  # pylint: disable=logging-format-interpolation
                   f'Learning rate: {lr:.7f}, '
                   f'Test accuracy: {accuracy_test:0.5f}, '
                   f'img/sec/core: {img_sec_core_test:.1f}')
      writer.write_scalars(
          step,
          dict(
              accuracy_test=accuracy_test,
              lr=lr,
              img_sec_core_test=img_sec_core_test))

    # Store checkpoint.
    if ((config.checkpoint_every and step % config.eval_every == 0) or
        step == total_steps):
      checkpoint_path = flax_checkpoints.save_checkpoint(
          workdir, (flax.jax_utils.unreplicate(opt_repl), step), step)
      logging.info('Stored checkpoint at step %d to "%s"', step,
                   checkpoint_path)

  return flax.jax_utils.unreplicate(opt_repl)
Exemplo n.º 5
0
def main():
    image_size = 384

    # jax model
    jax_model = models.KNOWN_MODELS['ViT-B_16'].partial(
        num_classes=1000, representation_size=None)
    _, params = jax_model.init_by_shape(
        jax.random.PRNGKey(0),
        # Discard the "num_local_devices" dimension of the batch for initialization.
        [((4, image_size, image_size, 3), 'float32')])
    params = checkpoint.load_pretrained(
        pretrained_path=
        '/home/hchen/Projects/vision_transformer/weights/jax/imagenet21k+imagenet2012_ViT-B_16.npz',
        init_params=params,
        model_config=models.CONFIGS['ViT-B_16'],
        logger=logger)
    params_repl = flax.jax_utils.replicate(params)
    # Then map the call to our model's forward pass onto all available devices.
    vit_apply_repl = jax.pmap(jax_model.call)

    # torch_model
    keys, values = load_jax(
        '/home/hchen/Projects/vision_transformer/weights/jax/imagenet21k+imagenet2012_ViT-B_16.npz'
    )
    state_dict = convert_jax_pytorch(keys, values)

    torch_model = VisionTransformer(image_size=(image_size, image_size),
                                    patch_size=(16, 16),
                                    emb_dim=768,
                                    mlp_dim=3072,
                                    num_heads=12,
                                    num_layers=12,
                                    num_classes=1000,
                                    attn_dropout_rate=0.0,
                                    dropout_rate=0.1)
    torch_model.load_state_dict(state_dict)
    torch_model.eval()

    data_loader = ImageNetDataLoader(
        data_dir='/home/hchen/Projects/vat_contrast/data/ImageNet',
        split='val',
        image_size=image_size,
        batch_size=16,
        num_workers=0)

    for batch_idx, (data, target) in enumerate(data_loader):

        # jax prediction
        target_numpy = target.cpu().numpy()
        data_numpy = data.cpu().numpy().transpose(0, 2, 3, 1).reshape(
            1, -1, image_size, image_size, 3)
        jax_predicted_logits = vit_apply_repl(params_repl,
                                              data_numpy)._value[0]
        jax_predicted = onp.argmax(jax_predicted_logits, axis=-1)

        # torch prediction
        with torch.no_grad():
            torch_predicted = torch_model(data)
        torch_predicted_logits = torch_predicted.cpu().numpy()
        torch_predicted = onp.argmax(torch_predicted_logits, axis=-1)

        # check difference
        # diff = onp.abs(jax_predicted_logits - torch_predicted_logits)
        # assert onp.allclose(jax_predicted_logits, torch_predicted_logits, rtol=1e-1, atol=1e-1), "diff {}, max {}, sum {}".format(diff, onp.max(diff), onp.sum(diff))

        diff = onp.abs(jax_predicted - torch_predicted)
        print(diff)
Exemplo n.º 6
0
def train_and_evaluate(config: ml_collections.ConfigDict, workdir: str):
  """Runs training interleaved with evaluation."""

  # Setup input pipeline
  dataset_info = input_pipeline.get_dataset_info(config.dataset, 'train')

  ds_train = input_pipeline.get_data(
      dataset=config.dataset,
      mode='train',
      repeats=None,
      mixup_alpha=config.mixup_alpha,
      batch_size=config.batch,
      pp_config=config.pp,
      shuffle_buffer=config.shuffle_buffer,
      tfds_data_dir=config.tfds_data_dir,
      tfds_manual_dir=config.tfds_manual_dir)
  batch = next(iter(ds_train))
  logging.info(ds_train)
  ds_test = input_pipeline.get_data(
      dataset=config.dataset,
      mode='test',
      repeats=1,
      batch_size=config.batch_eval,
      pp_config=config.pp,
      tfds_data_dir=config.tfds_data_dir,
      tfds_manual_dir=config.tfds_manual_dir)
  logging.info(ds_test)

  # Build VisionTransformer architecture
  model_cls = {'ViT': models.VisionTransformer,
               'Mixer': models.MlpMixer}[config.get('model_type', 'ViT')]
  model = model_cls(num_classes=dataset_info['num_classes'], **config.model)

  def init_model():
    return model.init(
        jax.random.PRNGKey(0),
        # Discard the "num_local_devices" dimension for initialization.
        jnp.ones(batch['image'].shape[1:], batch['image'].dtype.name),
        train=False)

  # Use JIT to make sure params reside in CPU memory.
  variables = jax.jit(init_model, backend='cpu')()

  pretrained_path = os.path.join(config.pretrained_dir,
                                 f'{config.model.name}.npz')
  if not tf.io.gfile.exists(pretrained_path):
    raise ValueError(
        f'Could not find "{pretrained_path}" - you can download models from '
        '"gs://vit_models/imagenet21k" or directly set '
        '--config.pretrained_dir="gs://vit_models/imagenet21k".')
  params = checkpoint.load_pretrained(
      pretrained_path=pretrained_path,
      init_params=variables['params'],
      model_config=config.model)

  total_steps = config.total_steps
  lr_fn = utils.create_learning_rate_schedule(total_steps, config.base_lr,
                                              config.decay_type,
                                              config.warmup_steps)

  update_fn_repl = make_update_fn(
      apply_fn=model.apply, accum_steps=config.accum_steps, lr_fn=lr_fn)
  infer_fn_repl = jax.pmap(functools.partial(model.apply, train=False))

  # Create optimizer and replicate it over all TPUs/GPUs
  opt = momentum_clip.Optimizer(
      dtype=config.optim_dtype,
      grad_norm_clip=config.grad_norm_clip).create(params)
  opt_repl = flax.jax_utils.replicate(opt)

  # Delete references to the objects that are not needed anymore
  del opt
  del params

  # Prepare the learning-rate and pre-fetch it to device to avoid delays.
  update_rng_repl = flax.jax_utils.replicate(jax.random.PRNGKey(0))

  # Run training loop
  writer = metric_writers.create_default_writer(workdir, asynchronous=False)
  writer.write_hparams(config.to_dict())
  logging.info('Starting training loop; initial compile can take a while...')
  t0 = lt0 = time.time()

  for step, batch in zip(
      range(1, total_steps + 1),
      input_pipeline.prefetch(ds_train, config.prefetch)):

    opt_repl, loss_repl, update_rng_repl = update_fn_repl(
        opt_repl, flax.jax_utils.replicate(step), batch, update_rng_repl)

    if step == 1:
      logging.info('First step took %.1f seconds.', time.time() - t0)
      t0 = time.time()
      lt0, lstep = time.time(), step

    # Report training metrics
    if config.progress_every and step % config.progress_every == 0:
      img_sec_core_train = (config.batch * (step - lstep) /
                            (time.time() - lt0)) / jax.device_count()
      lt0, lstep = time.time(), step
      writer.write_scalars(
          step,
          dict(
              train_loss=float(flax.jax_utils.unreplicate(loss_repl)),
              img_sec_core_train=img_sec_core_train))
      done = step / total_steps
      logging.info(f'Step: {step}/{total_steps} {100*done:.1f}%, '  # pylint: disable=logging-format-interpolation
                   f'img/sec/core: {img_sec_core_train:.1f}, '
                   f'ETA: {(time.time()-t0)/done*(1-done)/3600:.2f}h')

    # Run evaluation
    if ((config.eval_every and step % config.eval_every == 0) or
        (step == total_steps)):

      accuracies = []
      lt0 = time.time()
      for test_batch in input_pipeline.prefetch(ds_test, config.prefetch):
        logits = infer_fn_repl(
            dict(params=opt_repl.target), test_batch['image'])
        accuracies.append(
            (np.argmax(logits,
                       axis=-1) == np.argmax(test_batch['label'],
                                             axis=-1)).mean())
      accuracy_test = np.mean(accuracies)
      img_sec_core_test = (
          config.batch_eval * ds_test.cardinality().numpy() /
          (time.time() - lt0) / jax.device_count())
      lt0 = time.time()

      lr = float(lr_fn(step))
      logging.info(f'Step: {step} '  # pylint: disable=logging-format-interpolation
                   f'Learning rate: {lr:.7f}, '
                   f'Test accuracy: {accuracy_test:0.5f}, '
                   f'img/sec/core: {img_sec_core_test:.1f}')
      writer.write_scalars(
          step,
          dict(
              accuracy_test=accuracy_test,
              lr=lr,
              img_sec_core_test=img_sec_core_test))

  opt = flax.jax_utils.unreplicate(opt_repl)
  del opt_repl
  checkpoint.save(opt.target, f'{workdir}/model.npz')
  logging.info('Stored fine tuned checkpoint to %s', workdir)

  return opt
Exemplo n.º 7
0

model = models.KNOWN_MODELS['ViT-B_16'].partial(num_classes=1000)
_, params = model.init_by_shape(
    jax.random.PRNGKey(0),
    [((1, 224, 224, 3), jnp.float32)],
)
logger = logging.getLogger()
logger.setLevel(logging.INFO)

# pretrain_tf_model = checkpoint.inspect_params(checkpoint.load('imagenet21k+imagenet2012_ViT-B_16-224.npz'),
#                                             params=params, logger= logger)

pretain_tf_model = checkpoint.load_pretrained(
    pretrained_path='imagenet21k+imagenet2012_ViT-B_16-224.npz',
    init_params=params,
    model_config=models.CONFIGS['ViT-B_16'],
    logger=logger)


def print_size(dict_):
    if isinstance(dict_, dict):
        for dic in dict_:
            print(dic, print_size(dict_[dic]))
    else:
        return str(dict_.shape)


# print(pretain_tf_model.keys())
input_size = 224
patch_size = 16