# this method is slow, because it keeps calling a feature reduction
    # method for each bar and each estimator. We will globally reduce the
    # features before starting

    global_f_select = MultiSelectKBest(f_classif,
                                       pooling_function=np.min,
                                       k=3000)

    res2 = first_layer_predictor2.fit_transform(
        global_f_select.fit_transform(data, stimuli), stimuli)


    # Now visualise the predictions.
    from viz import get_bars, draw_words, pad, make_collage
    bars = get_bars(img_size=(50, 50))
    words1 = draw_words(res1, bars)
    words2 = draw_words(res2, bars)
    words = draw_words(stimuli, bars)

    stacked = np.concatenate([words1, words2, words], axis=1)
    # pad this slightly in order to be able to distinguish groups

    stacked = pad(stacked, [0, 10, 10])

    num_x = 8
    num_y = 12

    start_at = 0

    collage = make_collage(stacked[start_at:start_at + (num_x * num_y)].\
Exemplo n.º 2
0
    # this method is slow, because it keeps calling a feature reduction
    # method for each bar and each estimator. We will globally reduce the
    # features before starting

    global_f_select = MultiSelectKBest(f_classif,
                                       pooling_function=np.min,
                                       k=3000)

    #res2 = first_layer_predictor2.fit_transform(
    #    global_f_select.fit_transform(data, stimuli), stimuli)
    res2 = first_layer_predictor2.fit_transform(data, stimuli)

    # Now visualise the predictions.
    from viz import get_bars, draw_words, pad, make_collage
    bars = get_bars(img_size=(50, 50))
    words1 = draw_words(res1, bars)
    words2 = draw_words(res2, bars)
    words = draw_words(stimuli, bars)

    stacked = np.concatenate([words1, words2, words], axis=1)
    # pad this slightly in order to be able to distinguish groups

    stacked = pad(stacked, [0, 10, 10])

    num_x = 8
    num_y = 12

    start_at = 0

    collage = make_collage(stacked[start_at:start_at + (num_x * num_y)].\