def main():
    parser = argparse.ArgumentParser(
        description=
        "Trains the vocoder from the synthesizer audios and the GTA synthesized mels, "
        "or ground truth mels.",
        formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    parser.add_argument("--run_id", type=str, help= \
        "Name for this model instance. If a model state from the same run ID was previously "
        "saved, the training will restart from there. Pass -f to overwrite saved states and "
        "restart from scratch.")

    # parser.add_argument("datasets_root", type=str, help= \
    #     "Path to the directory containing your SV2TTS directory. Specifying --syn_dir or --voc_dir "
    #     "will take priority over this argument.")
    # parser.add_argument("--syn_dir", type=str, default=argparse.SUPPRESS, help= \
    #     "Path to the synthesizer directory that contains the ground truth mel spectrograms, "
    #     "the wavs and the embeds. Defaults to <datasets_root>/SV2TTS/synthesizer/.")
    # parser.add_argument("--voc_dir", type=str, default=argparse.SUPPRESS, help= \
    #     "Path to the vocoder directory that contains the GTA synthesized mel spectrograms. "
    #     "Defaults to <datasets_root>/SV2TTS/vocoder/. Unused if --ground_truth is passed.")

    parser.add_argument("-m", "--models_dir", type=str, default="vocoder/saved_models/", help=\
        "Path to the directory that will contain the saved model weights, as well as backups "
        "of those weights and wavs generated during training.")

    parser.add_argument("-d", "--metadata_path", default="")

    parser.add_argument("-w", "--weights_path", default="")

    parser.add_argument("-g", "--ground_truth", action="store_true", help= \
        "Train on ground truth spectrograms (<datasets_root>/SV2TTS/synthesizer/mels).")

    parser.add_argument("-s", "--save_every", type=int, default=0, help= \
        "Number of steps between updates of the model on the disk. Set to 0 to never save the "
        "model.")

    parser.add_argument("-b", "--backup_every", type=int, default=15000, help= \
        "Number of steps between backups of the model. Set to 0 to never make backups of the "
        "model.")

    parser.add_argument("-f", "--force_restart", default=False, action="store_true", help= \
        "Do not load any saved model and restart from scratch.")

    args = parser.parse_args()

    # del args.datasets_root
    args.models_dir = Path(args.models_dir)
    args.models_dir.mkdir(exist_ok=True)

    # Run the training
    print_args(args, parser)
    train(**vars(args))
Exemplo n.º 2
0
        "Defaults to <datasets_root>/SV2TTS/vocoder/. Unused if --ground_truth is passed.")
    parser.add_argument("-m", "--models_dir", type=str, default="vocoder/saved_models/", help=\
        "Path to the directory that will contain the saved model weights, as well as backups "
        "of those weights and wavs generated during training.")
    parser.add_argument("-g", "--ground_truth", action="store_true", help= \
        "Train on ground truth spectrograms (<datasets_root>/SV2TTS/synthesizer/mels).")
    parser.add_argument("-s", "--save_every", type=int, default=1000, help= \
        "Number of steps between updates of the model on the disk. Set to 0 to never save the "
        "model.")
    parser.add_argument("-b", "--backup_every", type=int, default=25000, help= \
        "Number of steps between backups of the model. Set to 0 to never make backups of the "
        "model.")
    parser.add_argument("-f", "--force_restart", action="store_true", help= \
        "Do not load any saved model and restart from scratch.")
    args = parser.parse_args()

    # Process the arguments
    if not hasattr(args, "syn_dir"):
        args.syn_dir = Path(args.datasets_root, "SV2TTS", "synthesizer")
    args.syn_dir = Path(args.syn_dir)
    if not hasattr(args, "voc_dir"):
        args.voc_dir = Path(args.datasets_root, "SV2TTS", "vocoder")
    args.voc_dir = Path(args.voc_dir)
    del args.datasets_root
    args.models_dir = Path(args.models_dir)
    args.models_dir.mkdir(exist_ok=True)

    # Run the training
    print_args(args, parser)
    train(**vars(args))
Exemplo n.º 3
0
def run_custom(run_id, syn_dir, voc_dir, models_dir, ground_truth = True, save_every = 1000, backup_every = 25000, force_restart = False):
    train(run_id, Path(syn_dir), Path(voc_dir), Path(models_dir), ground_truth, save_every, backup_every, force_restart)