Exemplo n.º 1
0
def show():
    import numpy as np

    import sys , h5py ; from numpy import float32 , uint8
    from vigra.filters import hessianOfGaussianEigenvalues , gaussianSmoothing
    from vigra.analysis import watersheds
    from vigra.analysis import labelVolumeWithBackground, extendedLocalMinima3D
    from PyQt4.QtCore import QTimer ; from PyQt4 . QtGui import QApplication
    app = QApplication ( sys.argv )
    from volumina.api import Viewer
    v = Viewer ()
    v . title = " Volumina Demo "
    v . showMaximized ()
    print "blubb"

    print a

    data = np.random.random((50,50,50))

    v . addGrayscaleLayer ( data , name =" raw data ")

    t = QTimer ()
    t.setInterval (200)

    app.exec_ ()
Exemplo n.º 2
0
def view(data, labels=None, layer_types=None):
    """
    """

    if labels is not None:
        assert len(labels) == len(data)
    if layer_types is not None:
        assert len(layer_types) == len(data)
        assert all(ltype in ('Grayscale', 'RandomColors', 'Red', 'Green', 'Blue')
                   for ltype in layer_types)

    app = QApplication(sys.argv)
    from volumina.api import Viewer

    v = Viewer()
    v.title = "Volumina Viewer"
    v.showMaximized()

    for i, d in enumerate(data):
        layer_name = layer_name = "layer_" + str(i) if labels is None else labels[i]
        if layer_types is None:
            _dtype_to_layer(v, d, layer_name)
        else:
            _name_to_layer(v, d, layer_types[i], layer_name)

    app.exec_()
def volumina_n_layer(data, labels = None):

    app = QApplication(sys.argv)
    import volumina
    from volumina.api import Viewer

    v = Viewer ()
    v.title = " Volumina Demo "
    v.showMaximized ()

    for ind, d in enumerate(data):
        layer_name = "layer_" + str(ind)

        if labels is not None:
            layer_name = labels[ind]
            # get data type of the elements d, to determine
            # if we use a grayscale overlay (float32) or a randomcolors overlay (uint) for labels

        data_type = d.dtype
        if data_type == np.float32 or data_type == np.float64:
            v.addGrayscaleLayer(d , name = layer_name)
        else:
            v.addRandomColorsLayer(d.astype(np.uint32), name = layer_name)

    app.exec_()
Exemplo n.º 4
0
def streaming_n_layer(files, keys, labels=None, block_shape=[100, 100, 100]):
    from volumina.api import Viewer
    from volumina.pixelpipeline.datasources import LazyflowSource

    from lazyflow.graph import Graph
    from lazyflow.operators.ioOperators.opStreamingHdf5Reader import OpStreamingHdf5Reader
    from lazyflow.operators import OpCompressedCache

    app = QApplication(sys.argv)

    v = Viewer()

    graph = Graph()

    def mkH5source(fname, gname):
        h5file = h5py.File(fname)
        dtype = h5file[gname].dtype

        source = OpStreamingHdf5Reader(graph=graph)
        source.Hdf5File.setValue(h5file)
        source.InternalPath.setValue(gname)

        op = OpCompressedCache(parent=None, graph=graph)
        op.BlockShape.setValue(block_shape)
        op.Input.connect(source.OutputImage)

        return op.Output, dtype

    #rawSource = mkH5source(data[0], keys[0])
    #v.addGrayscaleLayer(rawSource, name = 'raw')

    for i, f in enumerate(files):

        if labels is not None:
            layer_name = labels[i]
        else:
            layer_name = "layer_%i" % (i)

        source, dtype = mkH5source(f, keys[i])

        if np.dtype(dtype) in (np.dtype('uint8'), np.dtype('float32'),
                               np.dtype('float64')):
            v.addGrayscaleLayer(source, name=layer_name)
        else:
            v.addRandomColorsLayer(source, name=layer_name)

    v.setWindowTitle("Streaming Viewer")
    v.showNormal()
    app.exec_()
Exemplo n.º 5
0
def volumina_viewer():
    app = QApplication(sys.argv)
    v = Viewer()
    v.editor.setInteractionMode("navigation")
    yield v
    try:
        signal.signal(signal.SIGINT, lambda *_: app.quit())
        app.exec_()
    finally:
        app.quit()
Exemplo n.º 6
0
def view(dset):
    from volumina.api import Viewer
    from PyQt4.QtGui import QApplication
    app = QApplication([])
    v = Viewer()
    if isinstance(dset, str):
        f = h5py.File(dset, 'r')
        d = f["volume/data"].value
        f.close()
        v.setWindowTitle(dset)
        v.addGrayscaleLayer(d, name="raw")
    elif isinstance(dset, numpy.ndarray):
        v.addGrayscaleLayer(dset, name="raw")
    else:
        raise RuntimeError("%r" % dset)
    v.showMaximized()
    app.exec_()
def volumina_single_layer(data):
	app = QApplication (sys.argv)
	from volumina.api import Viewer

	v = Viewer ()
	v.title = " Volumina Demo "
	v.showMaximized ()
	v.addGrayscaleLayer (data , name =" raw data ")

	app . exec_ ()
Exemplo n.º 8
0
def view_HDF5(inpaths):

    app = QApplication(sys.argv)
    v = Viewer()

    for inpath in inpaths:
        if "n_1_" in inpath:
            prefix = "n_1_"
        elif "n_2_" in inpath:
            prefix = "n_2_"
        else:
            prefix = ""
        if "h5" in inpath:
            #data = vigra.readHDF5(inpath, "data")
            print
            print "inpath", inpath
            data = read_h5(inpath)
            file = inpath.split("/")[-1]
            name = prefix + file.split(".")[0]
            if "prob_files" in inpath or "seeds" in inpath or "trimap" in inpath:
                data = binarize_predict(data)
                file = inpath.split("/")[-2] + "_" + inpath.split("/")[-1]
                name = prefix + file.split(".")[0]
            print "type", type(data)
            if "test_data" in inpath or "prob_files" in inpath or "seeds" in inpath or "trimap" in inpath:
                v.addGrayscaleLayer(data, name=name)
            # if "trimaps" in inpath or "dense" in inpath or "sup_maps" in inpath or "seg_maps" in inpath:
            #     v.addRandomColorsLayer(255*data, name=name+"_color")
            else:
                v.addRandomColorsLayer(255*data, name=name+"_color")

        if "png" in inpath:
            img = vigra.impex.readImage(inpath)
            img = np.asarray(img)
            file = inpath.split("/")[-1]
            name = file.split(".")[0]
            print "type",type(img)
            v.addGrayscaleLayer(img, name=name)

            #v.addRandomColorsLayer(255*img, name=name+"color")
    v.showMaximized()
    app.exec_()
Exemplo n.º 9
0
def showStuff(raw_name,
              pred_viewer1,
              pred_viewer2,
              cutout_name,
              one_extra=None):
    # display the raw and annotations for cremi challenge data
    raw = vigra.impex.readHDF5(indir + datasets[raw_name], "data", order='C')
    # raw_old = vigra.readHDF5(indir+datasets["raw_bad"], "data", order = 'C')
    defect_prediction_128 = vigra.impex.readHDF5(indir +
                                                 datasets[pred_viewer2],
                                                 "data",
                                                 order='C')
    defect_prediction_150 = vigra.impex.readHDF5(indir +
                                                 datasets[pred_viewer1],
                                                 "data",
                                                 order='C')
    cutout_from_150_pred = vigra.impex.readHDF5(indir + datasets[cutout_name],
                                                "data",
                                                order='C')

    ####################################################################################################################
    # only used for fast testing stuff
    #change_one = vigra.readHDF5(indir+datasets["segmentation_on_equalized_image"], "data", order = 'C')
    #pdb.set_trace()
    #defect_prediction_150[1,:,:] = change_one[0,:,:,0]
    ####################################################################################################################
    # defect_prediction_150 = gt[..., 0]
    cutout = numpy.asarray(cutout_from_150_pred)
    rawdata = numpy.asarray(raw)
    # rawdata_old = numpy.asarray(raw_old)
    # op5ify
    # shape5d = rawdata.shape
    shape5d = (1, ) + rawdata.shape + (1, )
    print shape5d, rawdata.shape, rawdata.dtype

    app = QApplication([])
    v = Viewer()
    direct = False

    # layer for raw data
    rawdata = numpy.reshape(rawdata, shape5d)
    rawsource = ArraySource(rawdata)
    v.dataShape = shape5d
    lraw = GrayscaleLayer(rawsource, direct=direct)
    lraw.visible = True
    lraw.name = "raw"
    v.layerstack.append(lraw)

    # layer for cutout regions from raw data
    cutout = numpy.reshape(cutout, shape5d)
    cutoutsource = ArraySource(cutout)
    lcutout = GrayscaleLayer(cutoutsource, direct=direct)
    lcutout.visible = False
    lcutout.name = "cut_out"
    v.layerstack.append(lcutout)

    # layer for first prediction result
    defect_prediction_128 = numpy.reshape(defect_prediction_128, shape5d)
    synsource = ArraySource(defect_prediction_128)
    ct = create_random_16bit()
    ct[0] = 0
    lsyn = ColortableLayer(synsource, ct)
    lsyn.name = pred_viewer2
    lsyn.visible = False
    v.layerstack.append(lsyn)

    # layer for second prediction result
    segm = numpy.reshape(defect_prediction_150, shape5d)
    segsource = ArraySource(segm)
    ct = create_random_16bit()
    ct[0] = 0
    lseg = ColortableLayer(segsource, ct)
    lseg.name = pred_viewer1
    lseg.visible = False
    v.layerstack.append(lseg)
    if one_extra is None:
        v.showMaximized()
        app.exec_()

    if one_extra is not None:
        # layer for third prediction result
        extra_prediction = vigra.readHDF5(indir + datasets[one_extra],
                                          "data",
                                          order='C')
        extra_pred_reshaped = numpy.reshape(extra_prediction, shape5d)
        segsource = ArraySource(extra_pred_reshaped)
        ct = create_random_16bit()
        ct[0] = 0
        # ct = create_default_16bit()
        lseg = ColortableLayer(segsource, ct)
        lseg.name = one_extra
        lseg.visible = False
        v.layerstack.append(lseg)
        v.showMaximized()
        app.exec_()
Exemplo n.º 10
0
        a = np.zeros(500 * 500).reshape(500, 500).astype(np.uint8)
        ii = np.random.randint(0, 500, 1)
        jj = np.random.randint(0, 500, 1)
        a[ii, jj] = 1

        a = vigra.filters.discDilation(a, radius=20)
        array[:] = a.reshape(shape).view(np.ndarray) * 255
        op.Input.setDirty()

    do()

    cron.timeout.connect(do)
    ds = createDataSource(op.Output)
    layer = ColortableLayer(ds, jet())

    mainwin = Viewer()

    mainwin.layerstack.append(layer)
    mainwin.dataShape = (1, h, w, 1, 1)
    print(mainwin.centralWidget())

    BoxContr = BoxController(mainwin.editor, op.Output, boxListModel)
    BoxInt = BoxInterpreter(mainwin.editor.navInterpret, mainwin.editor.posModel, BoxContr, mainwin.centralWidget())

    mainwin.editor.setNavigationInterpreter(BoxInt)
    #     boxListModel.boxRemoved.connect(BoxContr.deleteItem)
    LV.show()
    mainwin.show()

    app.exec_()
Exemplo n.º 11
0
    nlm2  = vigra.readHDF5(pnlm2, 'data')

    tvbi2  = vigra.readHDF5(ptvbi2, 'data')
    tvbai20 = vigra.readHDF5(ptvbai20, 'data')
    tvc5 = vigra.readHDF5(ptvc5, 'data')
    m1 = vigra.readHDF5(pm1, 'data')
    m2 = vigra.readHDF5(pm2, 'data')
    m3 = vigra.readHDF5(pm3, 'data')
    g1 = vigra.readHDF5(pg1, 'data')
    gf5 = vigra.readHDF5(pgf5, 'data')
    gm3 = vigra.readHDF5(pgm3, 'data')

    diff = gf5-data 

    app = QApplication(sys.argv)
    v = Viewer()

    print "add layers"
    v.addGrayscaleLayer(data,    name="raw")
    v.addGrayscaleLayer(nlm,   name="non local mean")
    v.addGrayscaleLayer(nlm2,   name="non local mean (on presmoothed)")
    v.addGrayscaleLayer(tvbi2,   name="tv bregman   2.0  isotropic")
    v.addGrayscaleLayer(tvbai20, name="tv bregman   20.0 anisotropic")
    v.addGrayscaleLayer(tvc5,    name="tv Chambolle 2.0")
    v.addGrayscaleLayer(m1,    name="median 1")
    v.addGrayscaleLayer(m2,    name="median 2")
    v.addGrayscaleLayer(m3,    name="median 3")
    v.addGrayscaleLayer(g1.view(numpy.ndarray),    name="gauss 1")
    v.addGrayscaleLayer(gf5.view(numpy.ndarray),    name="gauss guided filter 5")
    v.addGrayscaleLayer(gm3.view(numpy.ndarray),    name="median guided filter 3")
Exemplo n.º 12
0
x = args[0].find(".h5")
fname = args[0][:x+3] 
gname = args[0][x+4:]

#load data
try:
    f = h5py.File(fname, 'r')       
except:
    raise RuntimeError("Could not load '%s'" % fname)
raw = f[gname].value.squeeze()
assert raw.ndim == 3
assert raw.dtype == numpy.uint8
f.close()

app = QApplication([])
v = Viewer()
direct = True

raw.shape = (1,)+raw.shape+(1,)

l1 = v.addGrayscaleLayer(raw, name="raw", direct=True)

#######################################################################################################################

skeletons = Skeletons()

e = SkeletonInterpreter(v.editor, skeletons, v)
v.editor.eventSwitch.interpreter = e

v.show()
app.exec_()
Exemplo n.º 13
0
x = args[0].find(".h5")
fname = args[0][: x + 3]
gname = args[0][x + 4 :]

# load data
try:
    f = h5py.File(fname, "r")
except:
    raise RuntimeError("Could not load '%s'" % fname)
raw = f[gname][()].squeeze()
assert raw.ndim == 3
assert raw.dtype == numpy.uint8
f.close()

app = QApplication([])
v = Viewer()
direct = True

raw.shape = (1,) + raw.shape + (1,)

l1 = v.addGrayscaleLayer(raw, name="raw", direct=True)

#######################################################################################################################

skeletons = Skeletons()

e = SkeletonInterpreter(v.editor, skeletons, v)
v.editor.eventSwitch.interpreter = e

v.show()
v.raise_()
Exemplo n.º 14
0
        #array[:] = np.random.randint(0,255,500*500).reshape(shape).astype(np.uint8)
        a = np.zeros(500*500).reshape(500,500).astype(np.uint8)
        ii=np.random.randint(0,500,1)
        jj=np.random.randint(0,500,1)
        a[ii,jj]=1
        a=vigra.filters.discDilation(a,radius=20)
        array[:]=a.reshape(shape).view(np.ndarray)*255
        op.Input.setDirty()
    
    do()
    
    cron.connect(cron, SIGNAL('timeout()'), do)
    ds = LazyflowSource( op.Output )
    layer = ColortableLayer(ds,jet())
     
    mainwin=Viewer()
    
    
    def _addNewLabel():
        """
        Add a new label to the label list GUI control.
        Return the new number of labels in the control.
        """
        erase=Label( "Dummy",QColor(255,255,255))
        label = Label( "Foreground",QColor(255,0,0))
        back = Label( "Background",QColor(0,255,0))
        
        newRow = labelListModel.rowCount()
        labelListModel.insertRow( newRow, erase )

        newRow = labelListModel.rowCount()
Exemplo n.º 15
0
import skneuro
import vigra
from volumina.api import Viewer
from PyQt4.QtGui import QApplication
import skneuro.denoising as dn



p = '/home/tbeier/Desktop/blocks/data_sub_3.h5'
data = vigra.impex.readHDF5(p,'data')[0:200,:,0:200].astype('uint8').squeeze()




app = QApplication(sys.argv)
v = Viewer()

v.addGrayscaleLayer(data, name="raw")



with vigra.Timer("get ranks 8*2"):
    a = dn.ballRankOrder(data,
        radius=12, 
        takeNth=2,
        ranks=(0.01,0.1, 0.5, 0.9, 0.99),
        useHistogram=True,
        minVal=0.0,
        maxVal=255.0,
        nBins=256)
    
        if event.type() == QEvent.GraphicsSceneMousePress:

            if event.button() == QtCore.Qt.LeftButton:
                # print "MyPathItem left click event detected!"
                pen = QPen(QColor(0, 255, 255))
                self.visiblePath.setPen(pen)

            if event.button() == Qt.RightButton:
                # print "MyPathItem right click event detected!"
                pen = QPen(QColor(255, 255, 0))
                self.visiblePath.setPen(pen)


app = QtGui.QApplication([])

v = Viewer()

c_x = numpy.array([10, 20, 40, 80])
c_y = numpy.array([80, 90, 100, 110])
item1 = ClickablePathItem(v.editor.imageScenes[2], clickable_width=11)
item1.set_path_from_coordinates(c_x, c_y)

# Create images
back = (numpy.ones((100, 200, 300)) * 0).astype(numpy.uint8)
back[0:60, 0:60, 0:60] = 255
back[40:80, 40:80, 40:80] = 120
back[40:100, 40:100, 0:40] = 80
back[0:45, 50:100, 0:100] = 200
ol = (numpy.zeros((100, 200, 300))).astype(numpy.uint8)
# ol[0:99, 0:99, 0:99] = 120
# ol[0:99, 120:140, 0:99] = 255
Exemplo n.º 17
0
    for n, arr in enumerate(imgs):
        arr = arr.squeeze()
        f.add_subplot(1, len(imgs), n)
        pylab.imshow(arr.swapaxes(0,1))
    pylab.show()

else:
    if False:
        pmapSmooth2 = dn.diffusion3d(p.copy()*255.0, param)
        vigra.impex.writeHDF5(pmapSmooth2, "sub.h5", "dc_1.00_2.50")
    if True :
        pmapSmooth1 = vigra.impex.readHDF5("sub.h5", "dc_0.75_2")
        pmapSmooth2 = vigra.impex.readHDF5("sub.h5", "dc_1.00_2.50")

    app = QApplication(sys.argv)
    v = Viewer()


    v.addGrayscaleLayer(pmapSmooth1, name="pmapSmooth_0.75_2.00")
    v.addGrayscaleLayer(pmapSmooth2, name="pmapSmooth_1.00_2.50")
    v.addGrayscaleLayer(p, name="pmap")

    v.addGrayscaleLayer(d, name="raw")
    


    #v.addGrayscaleLayer(bf.grayscaleErosion(data,sigma=2.5), name="e")
    #v.addGrayscaleLayer(dt, name="dt")

    v.setWindowTitle("data")
    v.showMaximized()
Exemplo n.º 18
0
from PyQt5.QtWidgets import QApplication

f = h5py.File("raw.h5", "w")
d = (255 * numpy.random.random((100, 200, 300))).astype(numpy.uint8)
f.create_dataset("raw", data=d)
f.close()

f = h5py.File("seg.h5", "w")
d = (10 * numpy.random.random((100, 200, 300))).astype(numpy.uint32)
f.create_dataset("seg", data=d)
f.close()

##-----

app = QApplication(sys.argv)
v = Viewer()

graph = Graph()


def mkH5source(fname, gname):
    h5file = h5py.File(fname)
    source = OpStreamingH5N5Reader(graph=graph)
    source.H5N5File.setValue(h5file)
    source.InternalPath.setValue(gname)

    op = OpCompressedCache(parent=None, graph=graph)
    op.BlockShape.setValue([100, 100, 100])
    op.Input.connect(source.OutputImage)

    return op.Output
Exemplo n.º 19
0
import numpy
import skneuro
import vigra
from volumina.api import Viewer
from PyQt4.QtGui import QApplication
import skneuro.denoising as dn

p = '/home/tbeier/Desktop/blocks/data_sub_3.h5'
data = vigra.impex.readHDF5(p, 'data')[0:200, :,
                                       0:200].astype('uint8').squeeze()

app = QApplication(sys.argv)
v = Viewer()

v.addGrayscaleLayer(data, name="raw")

with vigra.Timer("get ranks 8*2"):
    a = dn.ballRankOrder(data,
                         radius=12,
                         takeNth=2,
                         ranks=(0.01, 0.1, 0.5, 0.9, 0.99),
                         useHistogram=True,
                         minVal=0.0,
                         maxVal=255.0,
                         nBins=256)

v.addGrayscaleLayer(a, name="0.5 8* 2")

v.setWindowTitle("data")
v.showMaximized()
app.exec_()
Exemplo n.º 20
0
from volumina.api import Viewer
from volumina.colortables import default16_new
from volumina.pixelpipeline.datasources import ArraySinkSource, ArraySource
from volumina.layer import ColortableLayer, GrayscaleLayer

from PyQt5.QtWidgets import QApplication

SHAPE = (1, 600, 800, 1, 1)  # volumina expects 5d txyzc

data_arr = (255 * numpy.random.random(SHAPE)).astype(numpy.uint8)
label_arr = numpy.zeros(SHAPE, dtype=numpy.uint8)

##-----
app = QApplication(sys.argv)
v = Viewer()

data_src = ArraySource(data_arr)
data_layer = GrayscaleLayer(data_src)
data_layer.name = "Raw"
data_layer.numberOfChannels = 1

label_src = ArraySinkSource(label_arr)
label_layer = ColortableLayer(label_src,
                              colorTable=default16_new,
                              direct=False)
label_layer.name = "Labels"
label_layer.ref_object = None

assert SHAPE == label_arr.shape == data_arr.shape
v.dataShape = SHAPE
Exemplo n.º 21
0
    def addHocViewer(grayData=None, segData=None, title="viewer", visu=True):
        if visu:
            app = QApp.Instance().app

            v = Viewer()

            if grayData is not None:
                for name in grayData.keys():
                    data = grayData[name]
                    if _hasVigra:
                        if isinstance(data, vigra.arraytypes.VigraArray):
                            v.addGrayscaleLayer(data.view(numpy.ndarray),
                                                name=name)
                        else:
                            v.addGrayscaleLayer(data, name=name)
                    else:
                        v.addGrayscaleLayer(data, name=name)

            if segData is not None:
                for name in segData.keys():
                    data = segData[name]
                    if _hasVigra:
                        if isinstance(data, vigra.arraytypes.VigraArray):
                            v.addColorTableLayer(data.view(numpy.ndarray),
                                                 name=name)
                        else:
                            v.addColorTableLayer(data, name=name)
                    else:
                        v.addGrayscaleLayer(data, name=name)

            v.setWindowTitle(title)
            v.showMaximized()
            app.exec_()
Exemplo n.º 22
0
 def eventFilter(self, QObject, QEvent):
     if (QEvent.type() == QtCore.QEvent.MouseButtonRelease
             and QObject is self):
         pos = QEvent.pos()
         print('mouse button release: (%d, %d)' % (pos.x(), pos.y()))
     return Viewer.eventFilter(self, QObject, QEvent)
Exemplo n.º 23
0
        #array[:] = np.random.randint(0,255,500*500).reshape(shape).astype(np.uint8)
        a = np.zeros(500 * 500).reshape(500, 500).astype(np.uint8)
        ii = np.random.randint(0, 500, 1)
        jj = np.random.randint(0, 500, 1)
        a[ii, jj] = 1
        a = vigra.filters.discDilation(a, radius=20)
        array[:] = a.reshape(shape).view(np.ndarray) * 255
        op.Input.setDirty()

    do()

    cron.timeout.connect(do)
    ds = createDataSource(op.Output)
    layer = ColortableLayer(ds, jet())

    mainwin = Viewer()

    def _addNewLabel():
        """
        Add a new label to the label list GUI control.
        Return the new number of labels in the control.
        """
        erase = Label("Dummy", QColor(255, 255, 255))
        label = Label("Foreground", QColor(255, 0, 0))
        back = Label("Background", QColor(0, 255, 0))

        newRow = labelListModel.rowCount()
        labelListModel.insertRow(newRow, erase)

        newRow = labelListModel.rowCount()
        labelListModel.insertRow(newRow, label)
Exemplo n.º 24
0
    print "seg "
    labels = vigra.readHDF5(lPath, 'data')
    labelsS = vigra.readHDF5(lsPath, 'data')
    #labelsSS = vigra.readHDF5(lssPath, 'data')
    labelsPS = vigra.readHDF5("/mnt/CLAWS1/tbeier/data/stack_with_holes/lps.h5", 'data')

    print ew.shape



    print "datashape",data.shape
    print "resshape",smoothedT.shape

    app = QApplication(sys.argv)
    v = Viewer()

    v.addGrayscaleLayer(data, name="raw")
    v.addGrayscaleLayer(smoothedT, name="smoothedT")
    v.addGrayscaleLayer(ew, name="hessian ew")
    v.addGrayscaleLayer(ews, name="hessian ews")
    v.addGrayscaleLayer(ewss, name="hessian ewss")
    v.addGrayscaleLayer(pEws, name="hessian p80ews")
    #v.addGrayscaleLayer(dd, name="diff ews")
    v.addColorTableLayer(labels, name="labels")
    v.addColorTableLayer(labelsS, name="labelsS")
    #v.addColorTableLayer(labelsSS, name="labelsSS")
    v.addColorTableLayer(labelsPS, name="labelsPS")

    v.setWindowTitle("stack with holes")
    v.showMaximized()
Exemplo n.º 25
0
if len(args) != 1:
    parser.error("no hdf5 dataset supplied")

x = args[0].find(".h5")
fname = args[0][:x+3] 
gname = args[0][x+4:]

#load data
f = h5py.File(fname, 'r')       
raw = f[gname].value.squeeze()
assert raw.ndim == 3
assert raw.dtype == numpy.uint8
f.close()

app = QApplication([])
v = Viewer()
direct = True

raw.shape = (1,)+raw.shape+(1,)

def addLayers(v, direct):
    l1 = v.addGrayscaleLayer(raw, name="raw direct=%r" % direct, direct=direct)
    l1.visible = direct
    colortable = [QColor(0,0,0,0).rgba(), QColor(255,0,0).rgba()]
    l2 = v.addColorTableLayer((raw>128).astype(numpy.uint8), name="thresh direct=%r" % direct, colortable=colortable, direct=direct)
    l2.visible = direct
    return (l1, l2)

directLayers   = addLayers(v, True)    
indirectLayers = addLayers(v, False)    
Exemplo n.º 26
0
if len(args) != 1:
    parser.error("no hdf5 dataset supplied")

x = args[0].find(".h5")
fname = args[0][:x+3] 
gname = args[0][x+4:]

#load data
f = h5py.File(fname, 'r')       
raw = f[gname].value
assert raw.ndim == 3
assert raw.dtype == numpy.uint8
f.close()

app = QApplication([])
v = Viewer()
direct = True

raw.shape = (1,)+raw.shape+(1,)

l1 = v.addGrayscaleLayer(raw, name="raw", direct=True)
l1.visible = direct
colortable = [QColor(0,0,0,0).rgba(), QColor(255,0,0).rgba(), QColor(0,255,0).rgba(), QColor(0,0,255).rgba()]

s = ((raw/64)).astype(numpy.uint8)
def onClick(layer, pos5D, pos):
    print "here i am: ", pos5D, s[pos5D]
    
l2 = v.addColorTableLayer(s, clickFunctor=onClick, name="thresh", colortable=colortable, direct=direct)
l2.colortableIsRandom = True
l2.zeroIsTransparent = True
Exemplo n.º 27
0
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# Copyright 2011-2014, the ilastik developers

from volumina.api import Viewer
from PyQt4.QtGui import QApplication
import numpy

app = QApplication([])
v = Viewer()
a = (255*numpy.random.random((1, 50,60,70,10) )).astype(numpy.uint8)
v.addGrayscaleLayer(a, name="raw")
v.showMaximized()
app.exec_()
Exemplo n.º 28
0
    f = pylab.figure()
    for n, arr in enumerate(imgs):
        arr = arr.squeeze()
        f.add_subplot(1, len(imgs), n)
        pylab.imshow(arr.swapaxes(0, 1))
    pylab.show()

else:
    if False:
        pmapSmooth2 = dn.diffusion3d(p.copy() * 255.0, param)
        vigra.impex.writeHDF5(pmapSmooth2, "sub.h5", "dc_1.00_2.50")
    if True:
        pmapSmooth1 = vigra.impex.readHDF5("sub.h5", "dc_0.75_2")
        pmapSmooth2 = vigra.impex.readHDF5("sub.h5", "dc_1.00_2.50")

    app = QApplication(sys.argv)
    v = Viewer()

    v.addGrayscaleLayer(pmapSmooth1, name="pmapSmooth_0.75_2.00")
    v.addGrayscaleLayer(pmapSmooth2, name="pmapSmooth_1.00_2.50")
    v.addGrayscaleLayer(p, name="pmap")

    v.addGrayscaleLayer(d, name="raw")

    #v.addGrayscaleLayer(bf.grayscaleErosion(data,sigma=2.5), name="e")
    #v.addGrayscaleLayer(dt, name="dt")

    v.setWindowTitle("data")
    v.showMaximized()
    app.exec_()
    sys.exit()
Exemplo n.º 29
0
from volumina.api import Viewer
from PyQt4.QtGui import QApplication
import numpy

app = QApplication([])
v = Viewer()
a = (255*numpy.random.random((1, 50,60,70,10) )).astype(numpy.uint8)
v.addGrayscaleLayer(a, name="raw")
v.showMaximized()
app.exec_()
            if event.button() == QtCore.Qt.LeftButton:
                # print "MyPathItem left click event detected!"
                pen = QPen(QColor(0, 255, 255))
                pen.setWidth(5)
                self.setPen(pen)

            if event.button() == Qt.RightButton:
                # print "MyPathItem right click event detected!"
                pen = QPen(QColor(255, 255, 0))
                pen.setWidth(5)
                self.setPen(pen)

app = QtGui.QApplication([])

v = Viewer()

xFwd = numpy.array([10, 20, 40, 80])
xRev = xFwd[::-1]
x = numpy.concatenate([xFwd, xRev])
yFwd = numpy.array([80, 90, 100, 110])
yRev = yFwd[::-1]
y = numpy.concatenate([yFwd, yRev])
path1 = arrayToQPath(x, y)

item1 = ClickablePathItem()
item1.setPath(path1)

# Create images
back = (numpy.ones((100, 200, 300)) * 0).astype(numpy.uint8)
back[0:60, 0:60, 0:60] = 255
Exemplo n.º 31
0
        a = np.zeros(500*500).reshape(500,500).astype(np.uint8)
        ii=np.random.randint(0,500,1)
        jj=np.random.randint(0,500,1)
        a[ii,jj]=1

        a=vigra.filters.discDilation(a,radius=20)
        array[:]=a.reshape(shape).view(np.ndarray)*255
        op.Input.setDirty()

    do()

    cron.connect(cron, SIGNAL('timeout()'), do)
    ds = LazyflowSource( op.Output )
    layer = ColortableLayer(ds,jet())

    mainwin=Viewer()

    mainwin.layerstack.append(layer)
    mainwin.dataShape=(1,h,w,1,1)
    print mainwin.centralWidget()


    BoxContr=BoxController(mainwin.editor,op.Output,boxListModel)
    BoxInt=BoxInterpreter(mainwin.editor.navInterpret,mainwin.editor.posModel,BoxContr,mainwin.centralWidget())


    mainwin.editor.setNavigationInterpreter(BoxInt)
#     boxListModel.boxRemoved.connect(BoxContr.deleteItem)
    LV.show()
    mainwin.show()
Exemplo n.º 32
0
def addHocViewer(grayData=None, segData=None, title="viewer", visu=True):
    if visu:
        app = QApp.Instance().app

        v = Viewer()

        if grayData is not None:
            for data, name in grayData:
                if isinstance(data, vigra.arraytypes.VigraArray):
                    v.addGrayscaleLayer(data.view(numpy.ndarray), name=name)
                else:
                    v.addGrayscaleLayer(data, name=name)

        if segData is not None:
            for data, name in segData:
                if isinstance(data, vigra.arraytypes.VigraArray):
                    v.addColorTableLayer(data.view(numpy.ndarray), name=name)
                else:
                    v.addColorTableLayer(data, name=name)

        v.setWindowTitle(title)
        v.showMaximized()
        app.exec_()
Exemplo n.º 33
0
def showStuff(raw_name, pred_viewer1, pred_viewer2, cutout_name, one_extra = None):
    # display the raw and annotations for cremi challenge data
    raw = vigra.impex.readHDF5(indir+datasets[raw_name], "data", order = 'C')
    # raw_old = vigra.readHDF5(indir+datasets["raw_bad"], "data", order = 'C')
    defect_prediction_128 = vigra.impex.readHDF5(indir+datasets[pred_viewer2], "data", order = 'C')
    defect_prediction_150 = vigra.impex.readHDF5(indir+datasets[pred_viewer1], "data", order = 'C')
    cutout_from_150_pred = vigra.impex.readHDF5(indir+datasets[cutout_name], "data", order = 'C')

    ####################################################################################################################
    # only used for fast testing stuff
    #change_one = vigra.readHDF5(indir+datasets["segmentation_on_equalized_image"], "data", order = 'C')
    #pdb.set_trace()
    #defect_prediction_150[1,:,:] = change_one[0,:,:,0]
    ####################################################################################################################
    # defect_prediction_150 = gt[..., 0]
    cutout = numpy.asarray(cutout_from_150_pred)
    rawdata = numpy.asarray(raw)
    # rawdata_old = numpy.asarray(raw_old)
    # op5ify
    # shape5d = rawdata.shape
    shape5d = (1,)+rawdata.shape+(1,)
    print shape5d, rawdata.shape, rawdata.dtype

    app = QApplication([])
    v = Viewer()
    direct = False

    # layer for raw data
    rawdata = numpy.reshape(rawdata, shape5d)
    rawsource = ArraySource(rawdata)
    v.dataShape = shape5d
    lraw = GrayscaleLayer(rawsource, direct=direct)
    lraw.visible = True
    lraw.name = "raw"
    v.layerstack.append(lraw)

    # layer for cutout regions from raw data
    cutout = numpy.reshape(cutout, shape5d)
    cutoutsource = ArraySource(cutout)
    lcutout = GrayscaleLayer(cutoutsource, direct = direct)
    lcutout.visible = False
    lcutout.name = "cut_out"
    v.layerstack.append(lcutout)

    # layer for first prediction result
    defect_prediction_128 = numpy.reshape(defect_prediction_128, shape5d)
    synsource = ArraySource(defect_prediction_128)
    ct = create_random_16bit()
    ct[0] = 0
    lsyn = ColortableLayer(synsource, ct)
    lsyn.name = pred_viewer2
    lsyn.visible = False
    v.layerstack.append(lsyn)

    # layer for second prediction result
    segm = numpy.reshape(defect_prediction_150, shape5d)
    segsource = ArraySource(segm)
    ct = create_random_16bit()
    ct[0] = 0
    lseg = ColortableLayer(segsource, ct)
    lseg.name = pred_viewer1
    lseg.visible = False
    v.layerstack.append(lseg)
    if one_extra is None:
        v.showMaximized()
        app.exec_()

    if one_extra is not None:
        # layer for third prediction result
        extra_prediction = vigra.readHDF5(indir+datasets[one_extra], "data", order = 'C')
        extra_pred_reshaped = numpy.reshape(extra_prediction, shape5d)
        segsource = ArraySource(extra_pred_reshaped)
        ct = create_random_16bit()
        ct[0] = 0
        # ct = create_default_16bit()
        lseg = ColortableLayer(segsource, ct)
        lseg.name = one_extra
        lseg.visible = False
        v.layerstack.append(lseg)
        v.showMaximized()
        app.exec_()
        # array[:] = np.random.randint(0,255,500*500).reshape(shape).astype(np.uint8)
        a = np.zeros(500 * 500).reshape(500, 500).astype(np.uint8)
        ii = np.random.randint(0, 500, 1)
        jj = np.random.randint(0, 500, 1)
        a[ii, jj] = 1
        a = vigra.filters.discDilation(a, radius=20)
        array[:] = a.reshape(shape).view(np.ndarray) * 255
        op.Input.setDirty()

    do()

    cron.connect(cron, SIGNAL("timeout()"), do)
    ds = LazyflowSource(op.Output)
    layer = ColortableLayer(ds, jet())

    mainwin = Viewer()

    def _addNewLabel():
        """
        Add a new label to the label list GUI control.
        Return the new number of labels in the control.
        """
        erase = Label("Dummy", QColor(255, 255, 255))
        label = Label("Foreground", QColor(255, 0, 0))
        back = Label("Background", QColor(0, 255, 0))

        newRow = labelListModel.rowCount()
        labelListModel.insertRow(newRow, erase)

        newRow = labelListModel.rowCount()
        labelListModel.insertRow(newRow, label)
def volumina_double_layer(data, overlay):
	# get data type of the elements of overlay, to determine
	# if we use a grayscale overlay (float32) or a randomcolors overlay (uint) for labels
	mask = []
	for i in range( len(overlay.shape) ):
		mask.append(0)
	mask = tuple(mask)
	data_type = type(overlay[mask])

	app = QApplication (sys.argv)
	from volumina.api import Viewer

	v = Viewer ()
	v.title = " Volumina Demo "
	v.showMaximized ()
	v.addGrayscaleLayer(data , name = " raw data ")

	if data_type == np.float32:
		v.addGrayscaleLayer(overlay , name = " overlay ")
	else:
		v.addRandomColorsLayer(overlay, name = " overlay ")

	app . exec_ ()
Exemplo n.º 36
0
        sigma = float(sigma)

        return (-1.0 / sigma) * gauss(x, mean, sigma) + ((
            (-x + mean) / sigma)**2) * gauss(x, mean, sigma)

    for x in range(patchSize[0]):
        for y in range(patchSize[1]):
            for z in range(patchSize[2]):

                dgx = gauss2d(x, radius[0], sigma[0])
                gy = gauss(y, radius[1], sigma[1])
                gz = gauss(z, radius[2], sigma[2])
                kernel[x, y, z] = dgx * gy * gz

    return kernel


kernel = makeFilter(radius, sigma)
kernel /= numpy.sum(kernel)

kernel -= kernel.min()
kernel /= kernel.max()

app = QApplication(sys.argv)
v = Viewer()

v.addGrayscaleLayer(kernel, name="raw")

v.setWindowTitle("kernel")
v.showMaximized()
app.exec_()
def volumina_flexible_layer(data, layer_types, labels=None):

    assert len(layer_types) == len(data)

    app = QApplication (sys.argv)
    import volumina
    from volumina.api import Viewer

    v = Viewer ()
    v.title = " Volumina Demo "
    v.showMaximized ()

    for i, d in enumerate(data):
        layer_name = "layer_" + str(i)
        if labels is not None:
            layer_name = labels[i]

        # get data type of the elements d, to determine
        # if we use a grayscale overlay (float32) or a randomcolors overlay (uint) for labels
        data_type = d.dtype

        if layer_types[i] == 'Grayscale':
            v.addGrayscaleLayer(d , name = layer_name)
        elif layer_types[i] == 'RandomColors':
            v.addRandomColorsLayer(d.astype(np.uint32), name=layer_name)
        elif layer_types[i] == 'Red':
            v.addAlphaModulatedLayer(d , name=layer_name, tintColor=QColor(255,0,0))
        elif layer_types[i] == 'Green':
            v.addAlphaModulatedLayer(d , name=layer_name, tintColor=QColor(0,255,0))
        elif layer_types[i] == 'Blue':
            v.addAlphaModulatedLayer(d , name=layer_name, tintColor=QColor(0,0,255))
        else:
            raise KeyError("Invalid Layer Type, %s!" % layer_types[i])

    app.exec_()
        a = np.zeros(500 * 500).reshape(500, 500).astype(np.uint8)
        ii = np.random.randint(0, 500, 1)
        jj = np.random.randint(0, 500, 1)
        a[ii, jj] = 1

        a = vigra.filters.discDilation(a, radius=20)
        array[:] = a.reshape(shape).view(np.ndarray) * 255
        op.Input.setDirty()

    do()

    cron.timeout.connect(do)
    ds = LazyflowSource(op.Output)
    layer = ColortableLayer(ds, jet())

    mainwin = Viewer()

    mainwin.layerstack.append(layer)
    mainwin.dataShape = (1, h, w, 1, 1)
    print(mainwin.centralWidget())

    BoxContr = BoxController(mainwin.editor, op.Output, boxListModel)
    BoxInt = BoxInterpreter(mainwin.editor.navInterpret,
                            mainwin.editor.posModel, BoxContr,
                            mainwin.centralWidget())

    mainwin.editor.setNavigationInterpreter(BoxInt)
    #     boxListModel.boxRemoved.connect(BoxContr.deleteItem)
    LV.show()
    mainwin.show()
Exemplo n.º 39
0
from PyQt4.QtGui import QApplication

f = h5py.File("raw.h5", 'w')
d = (255 * numpy.random.random((100, 200, 300))).astype(numpy.uint8)
f.create_dataset("raw", data=d)
f.close()

f = h5py.File("seg.h5", 'w')
d = (10 * numpy.random.random((100, 200, 300))).astype(numpy.uint32)
f.create_dataset("seg", data=d)
f.close()

##-----

app = QApplication(sys.argv)
v = Viewer()

graph = Graph()


def mkH5source(fname, gname):
    h5file = h5py.File(fname)
    source = OpStreamingHdf5Reader(graph=graph)
    source.Hdf5File.setValue(h5file)
    source.InternalPath.setValue(gname)

    op = OpCompressedCache(parent=None, graph=graph)
    op.BlockShape.setValue([100, 100, 100])
    op.Input.connect(source.OutputImage)

    return op.Output
Exemplo n.º 40
0
    #dd = ew-ews

    print "seg "
    labels = vigra.readHDF5(lPath, 'data')
    labelsS = vigra.readHDF5(lsPath, 'data')
    #labelsSS = vigra.readHDF5(lssPath, 'data')
    labelsPS = vigra.readHDF5(
        "/mnt/CLAWS1/tbeier/data/stack_with_holes/lps.h5", 'data')

    print ew.shape

    print "datashape", data.shape
    print "resshape", smoothedT.shape

    app = QApplication(sys.argv)
    v = Viewer()

    v.addGrayscaleLayer(data, name="raw")
    v.addGrayscaleLayer(smoothedT, name="smoothedT")
    v.addGrayscaleLayer(ew, name="hessian ew")
    v.addGrayscaleLayer(ews, name="hessian ews")
    v.addGrayscaleLayer(ewss, name="hessian ewss")
    v.addGrayscaleLayer(pEws, name="hessian p80ews")
    #v.addGrayscaleLayer(dd, name="diff ews")
    v.addColorTableLayer(labels, name="labels")
    v.addColorTableLayer(labelsS, name="labelsS")
    #v.addColorTableLayer(labelsSS, name="labelsSS")
    v.addColorTableLayer(labelsPS, name="labelsPS")

    v.setWindowTitle("stack with holes")
    v.showMaximized()
        #array[:] = np.random.randint(0,255,500*500).reshape(shape).astype(np.uint8)
        a = np.zeros(500 * 500).reshape(500, 500).astype(np.uint8)
        ii = np.random.randint(0, 500, 1)
        jj = np.random.randint(0, 500, 1)
        a[ii, jj] = 1
        a = vigra.filters.discDilation(a, radius=20)
        array[:] = a.reshape(shape).view(np.ndarray) * 255
        op.Input.setDirty()

    do()

    cron.connect(cron, SIGNAL('timeout()'), do)
    ds = LazyflowSource(op.Output)
    layer = ColortableLayer(ds, jet())

    mainwin = Viewer()

    mainwin.layerstack.append(layer)
    mainwin.dataShape = (1, 500, 500, 1, 1)
    print mainwin.centralWidget()

    BoxContr = BoxController(mainwin.editor.imageScenes[2], op.Output,
                             boxListModel)
    BoxInt = BoxInterpreter(mainwin.editor.navInterpret,
                            mainwin.editor._posModel, BoxContr,
                            mainwin.centralWidget())

    mainwin.editor.setNavigationInterpreter(BoxInt)
    #     boxListModel.boxRemoved.connect(BoxContr.deleteItem)
    LV.show()
    mainwin.show()
Exemplo n.º 42
0
if len(args) != 1:
    parser.error("no hdf5 dataset supplied")

x = args[0].find(".h5")
fname = args[0][:x + 3]
gname = args[0][x + 4:]

# load data
f = h5py.File(fname, "r")
raw = f[gname].value.squeeze()
assert raw.ndim == 3
assert raw.dtype == numpy.uint8
f.close()

app = QApplication([])
v = Viewer()
direct = True

raw.shape = (1, ) + raw.shape + (1, )


def addLayers(v, direct):
    l1 = v.addGrayscaleLayer(raw, name="raw direct=%r" % direct, direct=direct)
    l1.visible = direct
    colortable = [QColor(0, 0, 0, 0).rgba(), QColor(255, 0, 0).rgba()]
    l2 = v.addColorTableLayer((raw > 128).astype(numpy.uint8),
                              name="thresh direct=%r" % direct,
                              colortable=colortable,
                              direct=direct)
    l2.visible = direct
    return (l1, l2)
Exemplo n.º 43
0
 def __init__(self):
     Viewer.__init__(self)
     self.installEventFilter(self)
Exemplo n.º 44
0
if len(args) != 1:
    parser.error("no hdf5 dataset supplied")

x = args[0].find(".h5")
fname = args[0][:x + 3]
gname = args[0][x + 4:]

# load data
f = h5py.File(fname, "r")
raw = f[gname].value
assert raw.ndim == 3
assert raw.dtype == numpy.uint8
f.close()

app = QApplication([])
v = Viewer()
direct = True

raw.shape = (1, ) + raw.shape + (1, )

l1 = v.addGrayscaleLayer(raw, name="raw", direct=True)
l1.visible = direct
colortable = [
    QColor(0, 0, 0, 0).rgba(),
    QColor(255, 0, 0).rgba(),
    QColor(0, 255, 0).rgba(),
    QColor(0, 0, 255).rgba()
]

s = ((raw // 64)).astype(numpy.uint8)
Exemplo n.º 45
0
    gt = vigra.readHDF5("/home/stamylew/volumes/groundtruth/dense_groundtruth/100p_cube1_dense_gt.h5", "data")

    from volumina.api import Viewer
    from volumina.pixelpipeline.datasources import LazyflowSource
    import sys
    from lazyflow.graph import Graph
    from lazyflow.operators.ioOperators.opStreamingHdf5Reader import OpStreamingHdf5Reader
    from lazyflow.operators import OpCompressedCache
    
    from PyQt4.QtGui import QApplication
    
    
    
    app = QApplication(sys.argv)
    v = Viewer()

    #raw layer
    v.addGrayscaleLayer(raw, name="test")

    #predict layer
    #predict = np.array(predict[:,:,:,0,0]) * 255
    #v.addColorTableLayer(predict.astype(np.float32), name="prediction")
    v.addGrayscaleLayer(predict.astype(np.float32), name="org")

    #trimap layer
    tm = np.array(tm)*255
    print np.unique(tm)
    #v.addColorTableLayer(tm.astype(np.float32), name="trimap")
    #v.addGrayscaleLayer(tm.astype(np.float32), name="tm")