Exemplo n.º 1
0
def simpleTest():
    width = 50
    height = 100
    #points = np.array([
    #    [0.2, 0.3],
    #    [0.7, 0.5],
    #    [0.6,0.2],
    #    [0.3, 0.9],
    #    [0.8, 0.1]
    #])
    points = sampleRandomPoints(100, width, height)  #np.random.rand(20, 2)
    print("Points:")
    print(points)

    cells = bounded_voronoi(points, [0, width, 0, height])
    for i, cell in enumerate(cells):
        print("cell", i, "with point", cell.generator())
        print(cell.corner())

    # example density map
    density = np.zeros((width, height))
    for x in range(width):
        for y in range(height):
            density[x, y] = 1 - math.sqrt((x / width - 0.5)**2 +
                                          (y / height - 0.5)**2)

    # compute cell integrals
    cell_densities = [cell.integrate(density) for cell in cells]

    # plotting
    plt.figure(figsize=(20, 10))

    ax1 = plt.subplot(1, 2, 1)
    ax1.imshow(density, cmap=cm.hot)

    ax2 = plt.subplot(1, 2, 2)
    for cell, (d, _) in zip(cells, cell_densities):
        vertices = np.array(list(cell.corner()) + [cell.corner()[0]])
        ax2.fill(vertices[:, 0], vertices[:, 1], facecolor=cm.hot(d))
    ax2.plot([cell.generator()[0] for cell in cells],
             [cell.generator()[1] for cell in cells], 'b.')
    ax2.plot([d[1][0] for d in cell_densities],
             [d[1][1] for d in cell_densities], 'r.')
    for cell in cells:
        ax2.plot(cell.corner()[:, 0], cell.corner()[:, 1], 'go')
    for cell in cells:
        vertices = np.array(list(cell.corner()) + [cell.corner()[0]])
        ax2.plot(vertices[:, 0], vertices[:, 1], 'k-')
    #fig.show()
    plt.savefig("bounded_voronoi.png")
Exemplo n.º 2
0
 def redo_voronoi(self):
     bound = self.boundary()
     points = map(lambda x: (x.x, x.y), self.stones)
     self.voronoi = bounded_voronoi(bound, points)
Exemplo n.º 3
0
 def init_voronoi(self):
     bound = self.boundary()
     points = []
     self.voronoi = bounded_voronoi(bound, points)
Exemplo n.º 4
0
def simpleOptim():
    N = 200
    width = 100
    height = 100
    iterations = 10

    # create density
    density = np.zeros((width, height))
    for x in range(width):
        for y in range(height):
            density[x,
                    y] = (1 -
                          math.sqrt(2) * math.sqrt((x / width - 0.5)**2 +
                                                   (y / height - 0.5)**2))**2

    # create algorithms
    algs = [WeightedLloyd(), WeightedLindeBuzoGray()]
    algNames = ["Lloyd", "Linde-Buzo-Gray"]
    init_points = sampleRandomPoints(N, width, height)
    for alg in algs:
        alg.init(density, N, init_points)

    plt.figure(figsize=(5, 5))
    ax1 = plt.subplot(1, 1, 1)
    ax1.imshow(density, cmap=cm.hot)
    plt.savefig("stipplingDensity.png")
    plt.close()

    # create animation
    def plot(cellsx, next_pointsx, algNames, filename):
        plt.figure(figsize=(10 * len(algs), 10))
        for i in range(len(algs)):
            ax2 = plt.subplot(1, len(algs), i + 1)
            ax2.title.set_text(algNames[i])
            ax2.set_xlim(0, width)
            ax2.set_ylim(0, height)
            cells = cellsx[i]
            ax2.plot([cell.generator()[0] for cell in cells],
                     [cell.generator()[1] for cell in cells], 'b.')
            ax2.plot(next_pointsx[i][:, 0], next_pointsx[i][:, 1], 'r.')
            for cell in cells:
                vertices = np.array(list(cell.corner()) + [cell.corner()[0]])
                ax2.plot(vertices[:, 0], vertices[:, 1], 'k-')
        plt.savefig(filename)
        plt.close()

    #plot(algs, algNames, "stippling%02d.png"%0)
    for i in range(iterations):
        cellsx = []
        next_pointsx = []
        for alg, algName in zip(algs, algNames):
            points = alg.points()
            cells = bounded_voronoi(points, [0, width, 0, height])
            converged = alg.step()

            next_points = alg.points()
            cellsx.append(cells)
            next_pointsx.append(next_points)

            print(algName, "converged:", converged)
        plot(cellsx, next_pointsx, algNames, "stippling%02d.png" % i)