Exemplo n.º 1
0
def data_loader(cfg, fname):

    dims = cfg['dims']
    chunk_size = cfg['batch_size'] * cfg['batches_per_chunk']
    xc = np.zeros((
        chunk_size,
        cfg['n_channels'],
    ) + dims, dtype=np.float32)
    reader = npytar.NpyTarReader(fname)
    yc = []
    for ix, (x, name) in enumerate(reader):
        cix = ix % chunk_size
        xc[cix] = x.astype(np.float32)
        yc.append(int(name.split('.')[0]) - 1)
        if len(yc) == chunk_size:
            xc = jitter_chunk(xc, cfg)
            yield (2.0 * xc - 1.0, np.asarray(yc, dtype=np.float32))
            yc = []
            xc.fill(0)
    if len(yc) > 0:
        # pad to nearest multiple of batch_size
        if len(yc) % cfg['batch_size'] != 0:
            new_size = int(np.ceil(
                len(yc) / float(cfg['batch_size']))) * cfg['batch_size']
            xc = xc[:new_size]
            xc[len(yc):] = xc[:(new_size - len(yc))]
            yc = yc + yc[:(new_size - len(yc))]

        xc = jitter_chunk(xc, cfg)
        yield (2.0 * xc - 1.0, np.asarray(yc, dtype=np.float32))
Exemplo n.º 2
0
def data_loader(cfg, fname):
    dims = cfg['dims']
    chunk_size = cfg['n_rotations']
    xc = np.zeros((chunk_size, cfg['n_channels'],)+dims, dtype=np.float32)
    reader = npytar.NpyTarReader(fname)
    yc = []
    for ix, (x, name) in enumerate(reader):
        cix = ix % chunk_size
        xc[cix] = x.astype(np.float32)
        yc.append(int(name.split('.')[0])-1)
        if len(yc) == chunk_size:
            yield (2.0*xc - 1.0, np.asarray(yc, dtype=np.float32))
            yc = []
            xc.fill(0)
    assert(len(yc)==0)
Exemplo n.º 3
0
def data_loader(fname):
    # the number for reading each time
    chunk_size = cfg['batch_size']*cfg['batches_per_chunk']
    xc = np.zeros((chunk_size, cfg['n_channels'],cfg['n_levels'],cfg['n_rings'],dims), dtype=np.float32)
    reader = npytar.NpyTarReader(fname)
    yc = []
    for ix, (x, name) in enumerate(reader):
        cix = ix % chunk_size
        xc[cix] = x.astype(np.float32)
        yc.append(int(name.split('.')[0])-1)
        if len(yc) == chunk_size:
            yield (xc, np.asarray(yc, dtype=np.float32))
            yc = []
            xc.fill(0)
    if len(yc) > 0:
        # pad to nearest multiple of batch_size

        new_size = int(np.ceil(len(yc)/float(cfg['batch_size'])))*cfg['batch_size']
        xc = xc[:new_size]
        xc[len(yc):] = xc[:(new_size-len(yc))]
        yc = yc + yc[:(new_size - len(yc))]
        yield (xc, np.asarray(yc, dtype=np.float32))
Exemplo n.º 4
0
def main(args):
    reader = npytar.NpyTarReader(args.viz_data_fname)
    out = np.load(args.viz_out_fname)

    yhat = out['yhat']
    ygnd = out['ygnd']

    css = """
    html { margin: 0 }
    body {
        background:#fff;
        color:#000;
        font:75%/1.5em Helvetica, "DejaVu Sans", "Liberation sans", "Bitstream Vera Sans", sans-serif;
        position:relative;
    }
    /*dt { font-weight: bold; float: left; clear; left }*/
    div { padding: 10px; width: 80%; margin: auto }
    img { border: 1px solid #eee }
    dl { margin:0 0 1.5em; }
    dt { font-weight:700; }
    dd { margin-left:1.5em; }
    table {
        border-collapse:collapse;
        border-spacing:0;
        margin:0 0 1.5em;
        padding:0;
    }
    td { padding:0.333em;
        vertical-align:middle;
    }
    }"""

    with open(args.viz_fname, 'w') as f:
        f.write('<html><head><style>')
        f.write(css)
        f.write('</style></head>')
        f.write('<body>')

        display_ix = np.random.randint(0, len(ygnd), args.num_instances)

        xds, yds = [], []
        for ix, (xd, yd) in enumerate(reader):
            if ix in display_ix:
                dix = ix

                iloc = np.round(np.array(xd.shape) / 2)
                imgXY = show_png(xd[:, :, iloc[2]]).get_html_embed_code()
                imgXZ = show_png(xd[:, iloc[1], :]).get_html_embed_code()
                imgYZ = show_png(xd[iloc[0], :, :]).get_html_embed_code()
                f.write('<div>')
                f.write('<table><tr><td>')
                f.write(imgXY)
                f.write(imgXZ)
                f.write(imgYZ)
                f.write('</td>')
                f.write('<td>')
                f.write('<dl><dt>Instance:</dt><dd>{}</dd>'.format(yd))
                f.write('<dt>Predicted label:</dt><dd>{}</dd>'.format(
                    str(yhat[dix])))
                f.write('<dt>True label:</dt><dd>{}</dd></dl>'.format(
                    str(ygnd[dix])))
                f.write('</td></tr></table>')
                f.write('</div>')
                xds.append(xd)
                yds.append(yd)

        f.write('</body></html>')
Exemplo n.º 5
0
from path import Path
import numpy as np

import voxnet
from voxnet import npytar
from voxnet import isovox
from voxnet.data import shapenet10

parser = argparse.ArgumentParser()
parser.add_argument('out_fname', type=Path)
parser.add_argument('test_fname', type=Path)
parser.add_argument('viz_fname', type=Path)
parser.add_argument('--num-instances', type=int, default=10)
args = parser.parse_args()

reader = npytar.NpyTarReader(args.test_fname)
out = np.load(args.out_fname)

yhat = out['yhat']
ygnd = out['ygnd']

iv = isovox.IsoVox()

css = """
html { margin: 0 }
body {
    background:#fff;
    color:#000;
    font:75%/1.5em Helvetica, "DejaVu Sans", "Liberation sans", "Bitstream Vera Sans", sans-serif;
    position:relative;
}
Exemplo n.º 6
0
        xc[cix] = x.astype(np.float32)
        yc.append(int(name.split('.')[0]) - 1)

        if ix % num_divide == 0:
            xc = jitter_chunk(xc)
            xc = 2.0 * xc - 1.0
            xc = np.array(xc)
            xc = np.reshape(xc, (-1, 32, 32, 32))
            data_list.append(xc)
            xc.fill(0)
    return data_list, yc


if Train:
    # Read all dataset
    reader = npytar.NpyTarReader('shapenet40_train.tar')
    # Set subset for augmentation
    xc = np.zeros((num_train_divide, 32, 32, 32))
    # After augmentation
    # data_list & yc includes whole dataset
    data_list, yc = tar_reader(reader, xc, Train)
    yc = np.array(yc)

    print('Start Saving!')
    num_h5 = 9
    len_train = int(num_train / num_train_divide)  # 36
    data_list_divide = int(len_train / num_h5)  # 3
    label_divide = int(num_train / num_h5)  # 9843

    for i in range(num_h5):
        final_xc = np.stack(data_list[data_list_divide * i:data_list_divide *