Exemplo n.º 1
0
def main():
    io = Io()
    io.eval_args()
    args = sys.argv
    fail = False
    ret = {'ok': True}
    unit = 'Pa'
    cmc = False

    if '--ids' in args:
        idx_ids = args.index('--ids') + 1
        try:
            ids = args[idx_ids].split('@')
        except:
            fail = True

    if not fail and len(ids) > 0:
        for id in ids:
            doc = io.get_doc_db(id)

            customer_object = doc.get('Calibration').get('CustomerObject')
            if customer_object.get("Class") == "SRG":
                customer_device = Srg(doc, customer_object)
            if customer_object.get("Class") == "CDG":
                customer_device = Cdg(doc, customer_object)
            tdo = ToDo(doc)
            analysis = doc.get('Calibration').get('Analysis')

            if "Values" in analysis and "Uncertainty" in analysis["Values"]:
                del analysis["Values"]["Uncertainty"]

            ana = Analysis(doc, init_dict=analysis)
            se2_uncert = UncertSe2(doc)

            result_type = analysis.get("AnalysisType", "default")
            result_type = "se2_expansion_direct"
            res = Result(doc, result_type=result_type)

            p_cal = ana.pick('Pressure', 'cal', unit)
            p_ind_corr = ana.pick('Pressure', 'ind_corr', unit)
            p_off = ana.pick('Pressure', 'offset', unit)

            conv = res.Const.get_conv(from_unit=unit,
                                      to_unit=res.ToDo.pressure_unit)
            average_index = res.ToDo.make_average_index(
                p_cal * conv, res.ToDo.pressure_unit)
            print(average_index)
            average_index = ana.coarse_error_filtering(
                average_index=average_index)
            print(average_index)
            average_index, ref_mean, ref_std, loops = ana.fine_error_filtering(
                average_index=average_index)
            pressure_range_index = ana.make_pressure_range_index(
                ana, average_index)

            print(average_index)
            print(ref_mean)
            print(ref_std)
            print(loops)

            if result_type == "se2_expansion_direct" and tdo.type == "error":
                average_index, reject_index = ana.ask_for_reject(
                    average_index=average_index)
                reject_index_offset = ana.ask_for_reject_offset(
                    average_index=average_index)
                d = {
                    "AverageIndex": average_index,
                    "AverageIndexFlat": ana.flatten(average_index),
                    "PressureRangeIndex": pressure_range_index,
                    "RejectIndex": reject_index,
                    "RejectIndexOffset": reject_index_offset
                }

                p_tdo, p_tdo_unit = tdo.Pres.get_value_and_unit("target")
                conv = res.Const.get_conv(from_unit=p_tdo_unit, to_unit="Pa")

                p_tdo = conv * p_tdo
                #assuming pascals, temperature correction only if more than 1 decade below 100 Pa
                p_tdo_evis = [
                    p_tdo[i] for i in range(len(p_tdo)) if p_tdo[i] < 9.5
                ]

                if len(p_tdo_evis) > 1:
                    e_vis, cf_vis, u_vis, vis_unit = ana.ask_for_evis()
                    d["Evis"] = e_vis
                    d["CFvis"] = cf_vis
                    d["Uvis"] = u_vis
                    d["VisUnit"] = vis_unit
                    print(d)

                ana.store_dict(quant="AuxValues", d=d, dest=None, plain=True)
                res.store_dict(quant="AuxValues", d=d, dest=None, plain=True)

            if "Uncertainty" in customer_object:
                print("lll")
                u_dev = customer_device.get_total_uncert(
                    meas_vec=p_ind_corr,
                    meas_unit="Pa",
                    return_unit="Pa",
                    res=ana,
                    skip_source="standard",
                    prefix=False)

            se2_uncert.u_PTB_rel(ana)
            se2_uncert.make_offset_stability(ana)

            customer_device.repeat_uncert(ana)
            customer_device.device_uncert(ana)

            ana.total_uncert()
            u = ana.pick("Uncertainty", "total_rel", "1")
            print(customer_device.doc)
            print("ffffffffffffffffffffffffffffff")
            print(tdo.type)
            print(result_type)
            if result_type == "se2_expansion_direct" and tdo.type == "sigma":

                p_ind_corr = np.take(p_ind_corr, ana.flatten(average_index))
                p_cal = np.take(p_cal, ana.flatten(average_index))
                p_off = np.take(p_off, ana.flatten(average_index))
                d = {
                    "AverageIndex": average_index,
                    "AverageIndexFlat": ana.flatten(average_index)
                }
                print(p_ind_corr)
                print(p_cal)
                #u =  np.delete(u, skip)
                sigma_null, sigma_slope, sigma_std = customer_device.sigma_null(
                    p_cal=p_cal,
                    cal_unit=unit,
                    p_ind=p_ind_corr,
                    ind_unit=unit)
                d["SigmaNull"] = sigma_null
                d["SigmaCorrSlope"] = np.abs(sigma_slope / sigma_null)
                d["SigmaStd"] = sigma_std

                # aux_values_pres = Values(doc.get('Calibration').get('Measurement').get("AuxValues").get("Pressure"))
                # rd, rd_unit = aux_values_pres.get_value_and_unit(d_type="offset")
                # d["OffsetMean"] = np.nanmean(rd)
                # d["OffsetStd"] = np.nanstd(rd)
                # d["OffsetUnit"] = rd_unit

                ana.store_dict(quant="AuxValues", d=d, dest=None, plain=True)
                res.store_dict(quant="AuxValues", d=d, dest=None, plain=True)

            maesurement_date = cl.Counter(
                doc["Calibration"]["Measurement"]["Values"]["Date"]
                ["Value"]).most_common(1)[0][0]
            doc["Calibration"]["Measurement"]["Date"] = [{
                "Type":
                "measurement",
                "Value": [maesurement_date]
            }]

            res.make_measurement_data_section(ana, result_type=result_type)

            if tdo.type == "error":
                # start build cert table
                p_ind, err, u = res.make_error_table(ana,
                                                     pressure_unit=unit,
                                                     error_unit='1')

            doc = ana.build_doc("Analysis", doc)
            doc = res.build_doc("Result", doc)
            io.save_doc(doc)

    else:
        ret = {"error": "no --ids found"}
Exemplo n.º 2
0
def main():
    io = Io()
    io.eval_args()
    ret = {"ok": True}
    result_type = "sens"
    i_unit = "A"
    for id in io.ids:
        doc = io.get_doc_db(id)
        tdo = ToDo(doc)

        if tdo.type not in ["sens"]:
            sys.exit("wrong script")
        if tdo.type == "sens":
            result_type = "sens"

        display = Display(doc)
        cus_dev = init_customer_device(doc)
        analysis = doc.get("Calibration").get("Analysis")

        ## wrong type:
        del analysis["Values"]["Sensitivity"]

        ana = Analysis(doc, init_dict=analysis, analysis_type=result_type)
        res = Result(doc, result_type=result_type, skip=io.skip)

        ## conversion to ana.pressure_unit if necessary
        cal_dict = ana.pick_dict("Pressure", "cal")

        p_ind_corr = ana.pick("Pressure", "ind_corr", i_unit)
        p_ind = ana.pick("Pressure", "ind", i_unit)
        p_ind_offset = ana.pick("Pressure", "ind_offset", i_unit)

        if cal_dict.get("Unit") != ana.pressure_unit:
            p_cal = ana.pick("Pressure", "cal", tdo.pressure_unit)
            conv = ana.Const.get_conv(from_unit=tdo.pressure_unit,
                                      to_unit=ana.pressure_unit)
            p_cal = p_cal * conv
        else:
            p_cal = ana.pick("Pressure", "cal", ana.pressure_unit)

        T_gas = ana.pick("Temperature", "Tuhv", "K")
        T_room = ana.pick("Temperature", "Troom", "K")

        if T_room is None:
            T_room = T_gas

        u_std = ana.pick("Uncertainty", "uncertPcal_rel", "1")

        ## recal Sensitivity
        s = p_ind_corr / (cus_dev.emis_current(i_unit) * p_cal)

        ana.store("Pressure", "cal", p_cal, ana.pressure_unit)
        ana.store("Pressure", "offset", p_ind_offset, i_unit)
        ana.store("Sensitivity", "gauge", s, "1/{}".format(ana.pressure_unit))

        ana.store("Uncertainty", "standard", u_std, "1")
        ana.store("Temperature", "gas", T_gas, "K")
        ana.store("Temperature", "room", T_room, "K")

        conv = ana.Const.get_conv(from_unit=ana.pressure_unit,
                                  to_unit=tdo.pressure_unit)
        average_index = tdo.make_average_index(p_cal * conv,
                                               tdo.pressure_unit,
                                               max_dev=0.2)

        ## will be filled up with aux values:
        d = {}

        display.check_outlier_sens(ana)
        average_index, reject_index = ana.ask_for_reject(
            average_index=average_index)
        flat_average_index = ana.flatten(average_index)

        if result_type == "sens":
            T, Tu = ana.ask_for_bake_out_temperature()
            if T is not None:
                d["Bakeout"] = True
                d["BakeoutTemperature"] = float(T)
                d["BakeoutTemperatureUnit"] = Tu
                t, tu = ana.ask_for_bake_out_time()
                d["BakeoutTime"] = float(t)
                d["BakeoutTimeUnit"] = tu
            else:
                d["Bakeout"] = False

            p, pu, t, tu = ana.ask_for_sputter()
            if T is not None:
                d["Sputter"] = True
                d["SputterPressure"] = float(p)
                d["SputterPressureUnit"] = pu
                d["SputterTime"] = float(t)
                d["SputterTimeUnit"] = tu
            else:
                d["Sputter"] = False

        d["AverageIndex"] = average_index
        d["AverageIndexFlat"] = flat_average_index
        ana.store_dict(quant="AuxValues", d=d, dest=None)

        ## rm values
        p_cal = np.take(p_cal, flat_average_index)
        p_ind_corr = np.take(p_ind_corr, flat_average_index)
        s = np.take(s, flat_average_index)

        ## store reduced quant. for plot
        ana.store("Pressure",
                  "red_ind_corr",
                  p_ind_corr,
                  i_unit,
                  dest="AuxValues")
        ana.store("Pressure",
                  "red_cal",
                  p_cal,
                  ana.pressure_unit,
                  dest="AuxValues")
        ana.store("Sensitivity",
                  "red_gauge",
                  s,
                  "1/{}".format(ana.pressure_unit),
                  dest="AuxValues")

        ## offset contrib
        cus_dev.coll_uncert(ana, ind_unit=i_unit)

        ## default uncert. contrib.  repeat
        cus_dev.repeat_uncert(ana, ind_unit=i_unit)
        cus_dev.digit_uncert(ana, ind_unit=i_unit)
        cus_dev.emis_uncert(ana, ind_unit=i_unit)

        cus_dev.device_uncert(ana)

        ## the uncertainty of the standard is
        # already calculated at analysis step
        ana.total_uncert()

        ## store red version for plot
        u_rep = ana.pick("Uncertainty", "repeat", "1")
        u_off = ana.pick("Uncertainty", "offset", "1")
        u_tot = ana.pick("Uncertainty", "total_rel", "1")
        u_dev = ana.pick("Uncertainty", "device", "1")
        u_std = ana.pick("Uncertainty", "standard", "1")

        ana.store("Uncertainty",
                  "red_u_rep",
                  np.take(u_rep, flat_average_index),
                  "1",
                  dest="AuxValues")
        ana.store("Uncertainty",
                  "red_u_std",
                  np.take(u_std, flat_average_index),
                  "1",
                  dest="AuxValues")
        ana.store("Uncertainty",
                  "red_u_dev",
                  np.take(u_dev, flat_average_index),
                  "1",
                  dest="AuxValues")
        ana.store("Uncertainty",
                  "red_u_tot",
                  np.take(u_tot, flat_average_index),
                  "1",
                  dest="AuxValues")
        ana.store("Uncertainty",
                  "red_u_off",
                  np.take(u_off, flat_average_index),
                  "1",
                  dest="AuxValues")

        display.plot_uncert(ana)

        # start making data sections
        res.make_measurement_data_section(ana, result_type=result_type)

        # start build cert table
        p_cal_mv, p_ind_mv, s_mv, u_mv = res.make_sens_table(
            ana,
            pressure_unit=ana.pressure_unit,
            sens_unit='1/Pa',
            uncert_unit="1",
            ind_unit="A")

        ana.store("Pressure", "ind_mean", p_ind_mv, i_unit, dest="AuxValues")
        ana.store("Pressure",
                  "cal_mean",
                  p_cal_mv,
                  ana.pressure_unit,
                  dest="AuxValues")
        ana.store("Sensitivity",
                  "gauge_mean",
                  s_mv,
                  "1/{}".format(ana.pressure_unit),
                  dest="AuxValues")
        ana.store("Uncertainty", "total_mean", u_mv, "1", dest="AuxValues")

        display.plot_mean(ana)

        doc = ana.build_doc("Analysis", doc)
        doc = res.build_doc("Result", doc)
        io.save_doc(doc)