Exemplo n.º 1
0
 def run_for(self, time, dt=0.01):
     """
     Run simulation for a certain amount of time(as measured in the system's time).
     Recommended to use this instead of simulate(dt) for most situations.
     Parameters
     ----------
     time: float
         Time for which the simulation will go on for in the system's time
     dt: float
         Time steps taken.
     """
     # Make pointer objects if not already created
     if self.display_forces:
         self._assign_forces()
     # Create visualization if necessary
     if self.visualize:
         self.create_vis()
     # Import vpython if necessary
     if self.visualize and self.visualizer_type == "vpython":
         import vpython
     # Simulate for given time
     while self.time < time:
         if self.visualize and self.visualizer_type == "vpython":
             vpython.rate(150)
         self.simulate(dt)
         if self.stop_on_cycle:
             if self._cycle_completed():
                 break
         self.time += dt
 def loop(self):
     while self.something_in_the_air:
         self.update()
         if self.particles:
             rate(200)
             for p,pos in zip(sim.particles, sim.positions):
                 if p.update:
                     p.pos = vec(*pos)
                 if p.pos.z < start.z:
                     p.update = False
particles =[]

for position, c in zip([start, start+vec(0, 3*radius, 0)],
                           [color.red, color.blue]):
    p = sphere(pos=position, radius=radius, color=c)
    p.v = v0
    p.update = True  # to determine if needs position update
    particles.append(p)


# In[ ]:

k = 1

while True:
    rate(500)
    
    # update position first
    for p in particles:
        if p.update:
            p.pos += p.v*dt
        if p.pos.z < start.z:
            p.update = False
    # calculate friction force
    
    Fd = -k * particles[1].v
    Fnet = Fg + Fd
    a = Fnet / m
    
    particles[0].v += g*dt
    particles[1].v += a*dt
Exemplo n.º 4
0
        for i in range(len(self.vwhitestars)):
            self.vwhitestars[i].pos = vpython.vector(*self.exitsXYZ[i])
        if self.Q_Spheres:
            for sphere in self.Q_Spheres:
                sphere.draw()

    def intersections(self):
        pass

    def mobius_transform(self, kind, delta):
        pass

    def rotate_spindle(self, q, pole, delta):
        pass


vpython.scene.width = 900
vpython.scene.height = 900
vpython.scene.range = 1.3
vpython.scene.forward = vpython.vector(-1, 0, 0)
vpython.scene.up = vpython.vector(0, 1, 0)

n = 4
sphere = Sphere(qutip.rand_ket(n))
energy = qutip.rand_herm(n)
while True:
    new_v = qutip.Qobj(evolvev(sphere.v.full().T[0], energy.full(), 0.007))
    new_v.dims = sphere.v.dims
    sphere.update(new_v)
    vpython.rate(1)
    sphere.draw()
Exemplo n.º 5
0
#border=extrusion(pos=vector(0,0,0), shape=shapes.rectangle(width=50, height=50,thickness=0.05),color=vector(0.1,0.1,0.2))

#Bricks
box = {}
for x in chain(range(-20,-19), range(-16,-15), range(-12, -11), range(-8,-7), range(-4, -3), range(0,1), range(4,5), range(8,9), range(12,13), range(16,17), range(20, 21)):
        for y in chain(range(8,9), range(12,13), range(16,17), range(20,21)):
                z = 0
                box[(x, y)]= vs.box(pos=vs.vector(x, y, z), length=4, height=4, width=0.1, color=vs.color.blue, texture=vs.textures.rock)

#Initial Velocities
paddle.v=vs.vector(3,0,0)
ball.v=vs.vector(0.7,5,0)

#Game
while(flag==0):
        vs.rate(5./dt)
        t=t+dt
        #Paddle Physics
        paddle.pos=paddle.pos+paddle.v*dt

        #Ball Physics
        ball.v=ball.v+g*dt
        ball.pos=ball.pos+ball.v*dt

        #Paddle Boundaries
        if (paddle.pos.x>19): #Right boundary
                paddle.v.x=0
        if (paddle.pos.x<-19): #Left Boundary
                paddle.v.x=0
                
        #Ball Boundaries
Exemplo n.º 6
0
ksi_ = idst(b_)

arr = []

# setup vectors with solely x values
for i in range(len(x)):
    arr.append([x[i] - L / 2, 0, 0])

ksi_c = curve(pos=arr)

n = len(arr)


def update_points(ksi_, y, z):
    for i in range(n):
        ksi_.modify(i, y=y[i], z=z[i])


t = 0
while True:
    rate(30)
    b_ = b0 * exp(1j * pi**2 * hbar * arange(1, N + 2)**2 / 2 / M / L**2 * t)
    ksi_ = idst(b_)

    y = real(ksi_) * 1e-9
    z = imag(ksi_) * 1e-9

    update_points(ksi_c, y, z)

    t += h * 5
def main():
    ''' Set up Stationary scene '''

    scene = vp.canvas(title='Solar system',
                      width=1300,
                      height=600,
                      center=vp.vector(0, 0, 0))
    scene.autoscale = False
    scene.range = star_radius * model_scale

    scene.camera.pos = vp.vector(0, 100000,
                                 star_radius * model_scale)  # nice view
    #    scene.camera.pos = vp.vector(100000,0,0)  # side view
    #    scene.camera.pos = vp.vector(0,100000,0)  # top down view
    scene.camera.axis = vp.vector(vp.vector(0, 0, 0) - scene.camera.pos)

    # Background stars
    if show_backgound_stars == True:
        init_stars(star_radius, star_size, num_star)
    ''' Set up Animated objects '''

    # Intialize Asteroid belt
    if show_asteroid_belt == True:
        print('Generating asteroid belt')
        ast_list, ast_radius_list, ast_theta0_list = init_belt(
            ast_belt_radius, ast_size, num_ast)
    # Initialize Kuiper belt
    if show_kuiper_belt == True:
        print('Generating kuiper belt')
        kui_list, kui_radius_list, kui_theta0_list = init_belt(
            kui_belt_radius, kui_size, num_kui)
    # Initialize planet system
    object_list = init_system(planet_filename, moon_filename)
    ''' Animation '''

    print('Begin animation')
    dt = 100
    i = 0  # Counter for moving the belts

    while True:
        vp.rate(500000)

        # update all objects position; call velocity verlet algorithm
        for body in object_list:
            # obtain objects other than the one being called in this iteration
            other_objects = object_list.copy()
            other_objects.remove(body)
            # pass other_objects into motion method as object
            body.motion(dt, other_objects, i)

        # rotate asteroid belt and kuiper belt
        if rotate_belt == True and show_asteroid_belt == True:
            # shift theta of all belt objects
            for ast, ast_radius, ast_theta0 in zip(ast_list, ast_radius_list,
                                                   ast_theta0_list):
                ast_theta = ast_theta0 + i * 2 * np.pi / ast_belt_period  # change in theta per unit time = omega = 2pi/T
                ast.pos = model_scale * ast_radius * vp.vector(
                    vp.cos(ast_theta), 0, vp.sin(ast_theta))
        if rotate_belt == True and show_kuiper_belt == True:
            for kui, kui_radius, kui_theta0 in zip(kui_list, kui_radius_list,
                                                   kui_theta0_list):
                kui_theta = kui_theta0 + i * 2 * np.pi / kui_belt_period
                kui.pos = model_scale * kui_radius * vp.vector(
                    vp.cos(kui_theta), 0, vp.sin(kui_theta))

        if i % int(print_step) == 0:
            print(
                'Celestial object positions update completed - Running next iteration'
            )

        i += 1

#Preparando modo gráfico
#Realizando o modo gráfico
from vpython import sphere,canvas,color,vector,cylinder,box,helix,rate

#Configuração da janela
scene2 = canvas(title = "Simulação de órbitas caóticas", width = 600, height = 600,background=color.white)


esferabola1 = sphere(radius=7,pos=vector(x1,y1,0),color=color.yellow)
esferabola2 = sphere(radius=2,pos=vector(x2,y2,0),color=color.red)
esferabola3 = sphere(radius=2,pos=vector(x3,y3,0),color=color.blue)


cont = 0
T = len(pontstemp)
for k in range(T):

	esferabola1.pos = vector(posicaox1[k],posicaoy1[k],0.0)
	esferabola2.pos = vector(posicaox2[k],posicaoy2[k],0.0)
	esferabola3.pos = vector(posicaox3[k],posicaoy3[k],0.0)

	cont = cont + 1
	if (cont == 100):
		sphere(radius=1.0,pos=vector(posicaox2[k],posicaoy2[k],0),color=color.red)
		sphere(radius=1.0,pos=vector(posicaox3[k],posicaoy3[k],0),color=color.blue)
		cont = 0

	rate(N/100)
Exemplo n.º 9
0
    def render(self, mode, render_step=10):
        assert isinstance(self._dyn, BallBalancerDynamics
                          ), "Missing dynamics properties for simulation!"

        # Cheap printing to console
        if self._step_count % render_step == 0:
            print(
                "time step: {:3}  |  in bounds: {:1}  |  state: {}  |  action: {}"
                .format(self._step_count,
                        self.state_space.contains(self._state), self._state,
                        self._curr_action))

            if not self.state_space.contains(self._state):
                # State is out of bounds
                np.set_printoptions(precision=3)
                print("min state : ", self.state_space.low)
                print("last state: ", self._state)
                print("max state : ", self.state_space.high)

        # Render using VPython
        import vpython as vp
        vp.rate(30)
        d_plate = 0.01  # only for animation

        # Init render objects on first call
        if self._anim_canvas is None:
            self._anim_canvas = vp.canvas(width=800,
                                          height=600,
                                          title="Quanser Ball Balancer")
            self._anim_ball = vp.sphere(
                pos=vp.vector(self._state[2], self._state[3],
                              self._dyn.r_ball + d_plate / 2.),
                radius=self._dyn.r_ball,
                mass=self._dyn.m_ball,
                color=vp.color.red,
                canvas=self._anim_canvas,
            )
            self._anim_plate = vp.box(
                pos=vp.vector(0, 0, 0),
                size=vp.vector(self._dyn.l_plate, self._dyn.l_plate, d_plate),
                color=vp.color.green,
                canvas=self._anim_canvas,
            )
        #  Compute plate orientation
        a = -self._plate_angs[0]  # plate's angle around the y axis (alpha)
        b = self._plate_angs[1]  # plate's angle around the x axis (beta)

        # Axis runs along the x direction
        self._anim_plate.axis = vp.vec(
            vp.cos(a),
            0,
            vp.sin(a),
        ) * self._dyn.l_plate
        # Up runs along the y direction (vpython coordinate system is weird)
        self._anim_plate.up = vp.vec(
            0,
            vp.cos(b),
            vp.sin(b),
        )

        # Compute ball position
        x = self._state[2]  # ball position along the x axis
        y = self._state[3]  # ball position along the y axis

        self._anim_ball.pos = vp.vec(
            x * vp.cos(a),
            y * vp.cos(b),
            self._dyn.r_ball + x * vp.sin(a) + y * vp.sin(b) +
            vp.cos(a) * d_plate / 2.,
        )

        # Set caption text
        self._anim_canvas.caption = f"""
                 make_trail=True)
ball_2 = vp.sphere(pos=initial_position_2,
                   radius=0.5,
                   color=vp.color.green,
                   make_trail=True)
wall_center = vp.vector(0., 0., 0.)
wall_dimensions = vp.vector(0.25, 10., 10.)
wall = vp.box(pos=wall_center, size=wall_dimensions, color=vp.color.red)

animation_time_step = 0.01  # seconds
rate_of_animation = 1 / animation_time_step
time_step = 0.005
stop_time = 1.

time = 0.
ball_velocity = initial_velocity
ball_2_velocity = initial_velocity_2
while time < stop_time:
    vp.rate(rate_of_animation)
    if ball.pos.x > wall.pos.x:
        ball_velocity.x = -ball_velocity.x  # reverse ball velocity
    ball.pos.x += ball_velocity.x * time_step
    ball.pos.y += ball_velocity.y * time_step
    ball.pos.z += ball_velocity.z * time_step
    if ball_2.pos.x > wall.pos.x:
        ball_2_velocity.x = -ball_2_velocity.x  # reverse ball_2 velocity
    ball_2.pos.x += ball_2_velocity.x * time_step
    ball_2.pos.y += ball_2_velocity.y * time_step
    ball_2.pos.z += ball_2_velocity.z * time_step
    time += time_step
    def __init__(self, height=500, width=1000, title='', caption='', grid=True):

        # Private lists
        self.__line_styles = [
            '',  # None
            '-',  # Solid (default)
            '--',  # Dashes
            ':',  # Dotted
            '-.',  # Dash-dot
        ]
        self.__marker_styles = [
            '+',  # Plus
            'o',  # Circle
            '*',  # Star
            '.',  # Dot
            'x',  # Cross
            's',  # Square
            'd',  # Diamond
            '^',  # Up triangle
            'v',  # Down triangle
            '<',  # Left triangle
            '>',  # Right triangle
            'p',  # Pentagon
            'h',  # Hexagon
        ]
        self.__colour_styles = [
            'r',  # Red
            'g',  # Green
            'b',  # Blue
            'y',  # Yellow
            'c',  # Cyan
            'm',  # Magenta
            'k',  # Black (default)
            'w',  # White
        ]
        self.__colour_dictionary = {
            'r': color.red.value,
            'g': color.green.value,
            'b': color.blue.value,
            'c': color.cyan.value,
            'y': color.yellow.value,
            'm': color.magenta.value,
            'k': color.black.value,
            'w': color.white.value
        }

        # Create a new independent scene
        self.scene = canvas()

        # Apply the settings
        self.scene.background = color.white
        self.scene.width = width
        self.scene.height = height
        self.scene.autoscale = False

        # Disable default controls
        self.scene.userpan = True  # Keep shift+mouse panning (key overwritten)
        self.scene.userzoom = True  # Keep zoom controls (scrollwheel)
        self.scene.userspin = False  # Remove ctrl+mouse enabled to rotate

        self.__grid_visibility = grid
        self.__camera_lock = False

        # Apply HTML title/caption
        if title != '':
            self.scene.title = title

        self.__default_caption = caption
        if caption != '':
            self.scene.caption = caption

        # Rotate the camera
        # convert_grid_to_z_up(self.scene)

        # Any time a key or mouse is held down, run the callback function
        rate(30)  # 30Hz
        self.scene.bind('keydown', self.__handle_keyboard_inputs)

        # Create the grid, and display if wanted
        self.__graphics_grid = GraphicsGrid(self.scene)
        # Toggle grid to 2D
        self.__graphics_grid.toggle_2d_3d()
        # Lock the grid
        self.__graphics_grid.set_relative(False)
        # Turn off grid if applicable
        if not self.__grid_visibility:
            self.__graphics_grid.set_visibility(False)

        # Reset the camera to known spot
        self.__reset_camera()
        self.__graphics_grid.update_grid()
Exemplo n.º 12
0
scene.width = 1200  # Ajustando a largura da cena
scene.height = 1000  # Ajustando a altura da cena
scene.camera.pos = vector(2, -1, 2)
scene.camera.axis = vector(-2, 1, -2)

suporte = box(pos=vector(.0, .05, .0),
              up=vector(.0, 1., .0),
              length=2,
              height=.1,
              width=2,
              texture=textures.wood)  # Suporte

mola = helix(pos=vector(0, 0, 0),
             axis=vector(*r_vrl),
             color=color.yellow,
             radius=.03)  # Mola do pendulo

bola = sphere(axis=vector(*r_vrl), radius=.1, make_trail=True)  # Bola

# Constantes

C = 1.

while t <= b:
    rate(C / h)
    mola.axis = vector(*r_vrl)
    bola.pos = vector(*r_vrl)
    r_vrl, v_vrl, vpm = passo_vrl(f, r_vrl, v_vrl, vpm, t, h)
    t += h
Exemplo n.º 13
0
    ),
]


bodies = planets + [
    star,
]


# %%
t = 0
dt = 0.001


while True:
    vp.rate(500)

    for b in bodies:
        b.force = vp.vector(0, 0, 0)

    for b1, b2 in itertools.product(bodies, bodies):
        if b1 != b2:
            b1.force += eval_gravitational_force(b1, b2)

    for b in bodies:
        b.momentum += b.force * dt
        b.pos += b.momentum / b.mass * dt

    t += dt
    time.sleep(0.1)
Exemplo n.º 14
0
    def run(self):
        pos = array(self.pos_list)
        p = array(self.p_list)
        m = array(self.m_list)
        m.shape = (self.ctx.stars, 1
                   )  # Numeric Python: (1 by Nstars) vs. (Nstars by 1)
        radius = array(self.r_list)
        vcm = sum(p) / sum(m)  # velocity of center of mass
        p = p - m * vcm  # make total initial momentum equal zero

        dt = 50.0
        pos = pos + (p / m) * (dt / 2.0)  # initial half-step
        num_hits = 0
        L = self.ctx.L

        while True:
            rate(50)
            L *= 1.0 + self.ctx.h0 * dt
            # strength of force to allow for external mass
            con = 1.0 * self.ctx.G * self.ctx.stars * self.ctx.Msun / L**3
            # Compute all forces on all stars
            r = pos - pos[:, newaxis]  # all pairs of star-to-star vectors
            for i in range(self.ctx.stars):
                r[i, i] = 1e6  # otherwise the self-forces are infinite
            rmag = sqrt(add.reduce(r**2, -1))  # star-to-star scalar distances
            hit = less_equal(rmag, radius + radius[:, newaxis]) - identity(
                self.ctx.stars)
            # 1,2 encoded as 1 * stars + 2
            hit_list = sort(nonzero(hit.flat)[0]).tolist()
            F = self.ctx.G * m * m[:,
                                   newaxis] * r / rmag[:, :,
                                                       newaxis]**3  # all force pairs

            for i in range(self.ctx.stars):
                F[i, i] = 0  # no self-forces
            p = p + sum(F, 1) * dt + pos * con * dt * m

            # Having updated all momenta, now update all positions
            pos += (p / m) * dt

            # Expand universe
            pos *= 1.0 + self.ctx.h0 * dt

            # Update positions of display objects; add trail
            for i in range(self.ctx.stars):
                v = pos[i]
                self.stars[i].pos = vec(v[0], v[1], v[2])

            # If any collisions took place, merge those stars
            for hit in hit_list:
                i, j = divmod(hit, self.ctx.stars)  # decode star pair
                if not (self.stars[i].visible or self.stars[j].visible):
                    continue
                # m[i] is a one-element list, e.g. [6e30]
                # m[i,0] is an ordinary number, e.g. 6e30
                new_pos = (pos[i] * m[i, 0] + pos[j] * m[j, 0]) / (m[i, 0] +
                                                                   m[j, 0])
                new_mass = m[i, 0] + m[j, 0]
                new_p = p[i] + p[j]
                new_radius = self.ctx.Rsun * (
                    (new_mass / self.ctx.Msun)**(1.0 / 3.0))
                i_set, j_set = i, j
                if radius[j] > radius[i]:
                    i_set, j_set = j, i
                self.stars[i_set].radius = new_radius
                m[i_set, 0] = new_mass
                pos[i_set] = new_pos
                p[i_set] = new_p
                self.stars[j_set].visible = 0
                p[j_set] = vec(0, 0, 0)
                m[j_set, 0] = self.ctx.Msun * 1e-30  # give it a tiny mass
                num_hits += 1
                pos[j_set] = (10.0 * L * num_hits, 0, 0)  # put it far away
Exemplo n.º 15
0
#initialize the position array:
r = np.array([th0, om0], float)
# RK4 algorithm
for t in tp:
    thp.append(r[0])
    omp.append(r[1])
    k1 = h * f(r, t)
    k2 = h * f(r + 0.5 * k1, t + 0.5 * h)
    k3 = h * f(r + 0.5 * k2, t + 0.5 * h)
    k4 = h * f(r + k3, t + h)
    r += (k1 + 2 * k2 + 2 * k3 + k4) / 6

mp.title('Phasee Portrait of a Pendulum')
mp.plot(thp, omp)
mp.xlabel(r'Angle $(Rads)$')
mp.ylabel(r'Angular Velocity $(\frac{Rads}{s})$')
mp.show()

# make animation
rod = cylinder(pos=vector(0, 0, 0),
               axis=vector(l * np.cos(th0 - pi / 2), l * np.sin(th0 - pi / 2),
                           0),
               radius=l / 40)
bob = sphere(pos=vector(l * np.cos(th0 - pi / 2), l * np.sin(th0 - pi / 2), 0),
             radius=l / 10)
for theta in thp:
    rate(N // 10)
    rod.axis = vector(l * np.cos(theta - pi / 2), l * np.sin(theta - pi / 2),
                      0)
    bob.pos = vector(l * np.cos(theta - pi / 2), l * np.sin(theta - pi / 2), 0)
Exemplo n.º 16
0
def main(theta=45.0,
         omega=0.0,
         dt=0.001,
         rod_length=5.0,
         dampening_coeff=0.3,
         acceleration_from_gravity=9.8,
         trail=False,
         animation_rate=2000,
         time_limit=None,
         repeat=True,
         limits=(0.01, 0.001),
         labels=True,
         display_width=1900,
         display_height=950,
         plot=False):
    """ Pendulum demo built for use with VPython.

    :param theta: (float) Starting angle of pendulum from rest in degrees (default is 45.0).
    :param omega: (float) Starting angular velocity of the pendulum in degrees/second (default is 0).
    :param dt: (float) Change in time in seconds; must be very small (default is 0.001).
    :param rod_length: (float) Length of rod in meters; end of rod to center of bob (default is 5.0).
    :param dampening_coeff: (float) The damping coefficient; a number between 0 and 1 (default is 0.3).
    :param acceleration_from_gravity: (float) The acceleration due to gravity on the pendulum in meters/second**2
    (default is 9.8).
    :param trail: (bool) Shows the path of the moving bob (default is False).
    :param animation_rate: (int) The maximum amount of loop executions per second (default is 2000).
    :param time_limit: (float) A number that represents an ending time for the pendulum animation
    (t goes from 0 to time_limit with dt step sizes); if left as None the demo will run until it reaches its
    limit values (unless repeat is True) (default is None).
    :param repeat: (bool) If repeat is True and time_limit is None, repeats the demo after the pendulum has reached
    its limit values (default is True).
    :param limits: (list) A tuple that when time_limit is None, will use +- the given theta (degrees) and
    omega (degrees/time) values to determine when to either reset the pendulum or stop (default is (0.01, 0.001)).
    :param labels: (bool) True if you want to display a box of the input values (default is True).
    :param display_width: (int) The VPython canvas pixel width.
    :param display_height: (int) The VPython canvas pixel height.
    :param plot: (bool) If True, will display a graph of the bob's angle vs. time; can cause performance issues
    (default is False).
    """

    _make_scene(plot, display_width, display_height)
    pen = Pendulum(theta=theta,
                   omega=omega,
                   dt=dt,
                   rod_length=rod_length,
                   dampening_coeff=dampening_coeff,
                   acceleration_from_gravity=acceleration_from_gravity,
                   trail=trail)
    pen.shelf()
    rod = pen.rod(pen.position)
    bob = pen.bob(pen.position)

    if labels:
        _make_labels(theta, omega, dampening_coeff, acceleration_from_gravity,
                     rod_length)

    t = 0
    if plot:
        f = _make_plot(pen.theta, display_width, display_height)

    if time_limit is None:
        while True:
            rate(animation_rate)
            angle = pen.angular_position()
            vel = pen.angular_velocity()

            if -limits[0] < angle < limits[0] and -limits[1] < vel < limits[1]:
                if repeat:
                    pen.theta = math.radians(theta)
                    pen.omega = math.radians(omega)
                    bob.clear_trail()

                    if plot:
                        f.delete()
                        t = 0
                else:
                    break

            rod.axis = pen.position
            bob.pos = pen.position

            if plot:
                f.plot(t, math.degrees(pen.theta))
                t += dt

    else:
        while t <= time_limit:
            while t < time_limit:
                rate(animation_rate)
                pen.angular_position()
                pen.angular_velocity()
                rod.axis = pen.position
                bob.pos = pen.position

                if plot:
                    f.plot(t, math.degrees(pen.theta))
                t += dt

            if repeat and t >= time_limit:
                pen.theta = math.radians(theta)
                pen.omega = math.radians(omega)
                bob.clear_trail()

                if plot:
                    f.delete()
                t = 0
Exemplo n.º 17
0
# plot(tpoints, energy_points)
# xlabel('t (s)')
# ylabel('energy (J)')
# show()

# Make animation
rod1 = cylinder(pos=vector(0, 0, 0),
                axis=vector(l * cos(theta1_0 - pi / 2),
                            l * sin(theta1_0 - pi / 2), 0),
                radius=l / 40)
bob1 = sphere(pos=vector(l * cos(theta1_0 - pi / 2),
                         l * sin(theta1_0 - pi / 2), 0),
              radius=l / 10)
rod2 = cylinder(pos=vector(l * cos(theta1_0 - pi / 2), l * sin(theta1_0 - pi / 2), 0), \
                axis=vector(l * cos(theta2_0 - pi / 2), l * sin(theta2_0 - pi / 2), 0), radius=l/40)
bob2 = sphere(pos=vector(l * cos(theta2_0 - pi / 2),
                         l * sin(theta2_0 - pi / 2), 0),
              radius=l / 10)

for i in range(N):
    rate(N // 100)
    vector1 = vector(l * cos(theta1_points[i] - pi / 2),
                     l * sin(theta1_points[i] - pi / 2), 0)
    vector2 = vector(l * cos(theta2_points[i] - pi / 2),
                     l * sin(theta2_points[i] - pi / 2), 0)
    rod1.axis = vector1
    bob1.pos = vector1
    rod2.pos = vector1
    rod2.axis = vector2
    bob2.pos = vector1 + vector2
                        color=vp.color.green,
                        make_trail=True,
                        retain=100)
r_hat_trail = vp.sphere(pos=vp.vector(Rx[0], Ry[0], Rz[0]),
                        radius=.005,
                        color=vp.color.blue,
                        make_trail=True,
                        retain=100)

# Run the Animations with Vpython using a loop
# if statement allows the pause button to work
vp.sleep(1)
i = 0
while i < iterations:
    if running is True:
        vp.rate(60)
        r1 = vp.vector(Px[i], Py[i], Pz[i])
        r2 = vp.vector(Qx[i], Qy[i], Qz[i])
        r3 = vp.vector(Rx[i], Ry[i], Rz[i])
        r1_neg = vp.vector(-Px[i], -Py[i], -Pz[i])

        # Updates the vectors
        p_hat_pos.axis = r1
        p_hat_neg.axis = r1_neg
        q_hat_DE.axis = r2
        p_hat.axis = r1
        q_hat.axis = r2
        r_hat.axis = r3

        # Updates the trails
        p_hat_pos_trail.pos = r1
Exemplo n.º 19
0
	# Mass
	m = Msun

	# Color
	col = vector(uniform(0.7,1.0),uniform(0.7,1.0), uniform(0.7,1.0))

	# Create the star
	stars = np.append(stars, vpy.sphere(pos=pos, radius=r, color=col))
	positions = np.append(positions, pos)
	masses = np.append(masses, m)
	velocities = np.append(velocities, vector(0,0,0))


# Main loop
while True:
	vpy.rate(10)

	# Star to star scalar distances
	rscalar = positions-positions[:,np.newaxis]
	for row in range(np.shape(rscalar)[0]):
		for col in range(np.shape(rscalar)[1]):
			rscalar[row, col] = math.sqrt(rscalar[row, col].dot(rscalar[row, col]))
			if (rscalar[row, col] == 0):
				rscalar[row, col] = 1

	# Star to star vectorial distances
	r = positions-positions[:,np.newaxis]

	# Star to star forces
	F = G*masses*masses[:,np.newaxis]/(rscalar**2) # Module
	for row in range(np.shape(F)[0]):
Exemplo n.º 20
0
def main():
    box_size = 10
    box_thickness = 1
    ball_radius = 0.5
    # Set the axis of each side to be a perpendicular unit vector pointing into
    # the box. That'll allow us to handle all the walls in a loop, rather than
    # spelling them out
    axes = [
        vpython.vector(1, 0, 0),
        vpython.vector(-1, 0, 0),
        vpython.vector(0, 1, 0),
    ]
    box_sides = []
    for axis in axes:
        side = vpython.box(
            pos=-0.5 * box_size * axis,
            axis=axis,
            height=box_size,
            width=box_size,
        )
        box_sides.append(side)

        vpython.arrow(
            pos=-0.5 * box_size * axis,
            axis=axis,
            color=vpython.color.blue,
        )

    # Initial position chosen randomly inside the box
    x0 = vpython.vector(
        random.random() * box_size - 0.5 * box_size,
        random.random() * box_size - 0.5 * box_size,
        0,
    )
    # Initial velocity small enough that we should not escape
    v_max = math.sqrt(-2 * GRAVITY * (0.5 * box_size - x0.y))
    v0 = vpython.vector(
        random.random() * v_max,
        random.random() * v_max,
        0,
    )
    # Initialize the ball. Python also lets us attach an extra attribute, in
    # this case velocity, to the ball object.
    ball = vpython.sphere(
        pos=x0,
        color=vpython.color.red,
        radius=ball_radius,
    )
    ball.v = v0
    ball.m = 1
    # Set up the graph pane and each curve we want in it
    vpython.graph(
        title="Ball in a Box",
        xtitle="Time (s)",
        ytitle="Energy (J)",
        fast=False,
    )
    graph_pot = vpython.gcurve(color=vpython.color.blue,
                               width=2,
                               label="Potential Energy")
    graph_kin = vpython.gcurve(color=vpython.color.red,
                               width=2,
                               label="Kinetic Energy")
    graph_tot = vpython.gcurve(color=vpython.color.magenta,
                               width=2,
                               label="Total Energy")
    # Time loop! Handle gravity and collisions
    t, dt, tmax = 0, 0.001, 10
    while t < tmax:
        t += dt
        vpython.rate(1 / dt)
        dvdt = -GRAVITY * vpython.vector(0, -1, 0)
        ball.v += dvdt * dt
        ball.pos += ball.v * dt
        # Check for collisions
        for side in box_sides:
            # Vector from the center of the ball to the center of the wall
            center_to_center = ball.pos - side.pos
            # Project onto the wall's perpendicular unit vector to get distance
            distance = center_to_center.dot(side.axis)
            # If it's a collision, flip the component of the ball's velocity
            # that's perpendicular to the wall
            if distance < (ball.radius + 0.5 * box_thickness):
                dv = -2 * side.axis.dot(ball.v)
                ball.v += side.axis * dv
        energy_pot = -ball.m * GRAVITY * ball.pos.y
        energy_kin = 0.5 * ball.m * ball.v.dot(ball.v)
        graph_pot.plot(t, energy_pot)
        graph_kin.plot(t, energy_kin)
        graph_tot.plot(t, energy_pot + energy_kin)
    return
    omegapoints.append(r[1])
    k1 = h * f(r, t)
    k2 = h * f(r + 0.5*k1, t + 0.5 * h)
    k3 = h * f(r + 0.5*k2, t + 0.5 * h)
    k4 = h * f(r + k3, t + h)
    r += (k1 + 2*k2 + 2*k3 + k4)/6


# Plot theta vs t
def opt_plot():
    plt.grid(True, linestyle=":", color='0.50')
    plt.minorticks_on()
    plt.tick_params(axis='both', which='minor', direction='in', top=True, right=True, length=5, width=1, labelsize=15)
    plt.tick_params(axis='both', which='major', direction='in', top=True, right=True, length=8, width=1, labelsize=15)

# plt.plot(tpoints, (np.array(thetapoints, float)*180/np.pi), color='blue')
# plt.title(r'$\theta$ vs $t$', family='serif', fontsize=15)
# plt.xlabel('t (s)', family='serif', fontsize=15)
# plt.ylabel(r'$\theta$ (degrees)', family='serif', fontsize=15)
# opt_plot()
# plt.show()


# Making the animation
rod = vp.cylinder(pos=vp.vector(0, 0, 0), axis=vp.vector(l*np.cos(theta_0-np.pi/2), l*np.sin(theta_0-np.pi/2), 0), radius=l/40)
bob = vp.sphere(pos=vp.vector(l*np.cos(theta_0-np.pi/2), l*np.sin(theta_0-np.pi/2), 0), radius=l/10)

for theta in thetapoints:
    vp.rate(N // 10)
    rod.axis = vp.vector(l*np.cos(theta-np.pi/2), l*np.sin(theta-np.pi/2), 0)
    bob.pos = vp.vector(l*np.cos(theta-np.pi/2), l*np.sin(theta-np.pi/2), 0)
Exemplo n.º 22
0
g = 9.8
s = sphere()
s.pos = vector(-7, 1, 0)
s.velocity = vector(5, 19.2, 0)
s.accel = vector(0, -g, 0)
s.mass = 2.0

t = 0

while t < 10.0:

    # compute and graph energy
    kinetic_energy = 0.5 * s.mass * dot(s.velocity, s.velocity)
    potential_energy = s.mass * 9.8 * dot(s.pos + vector(0, ymax / 2, 0),
                                          vector(0, 1, 0))
    kinetic.plot(pos=(t, kinetic_energy))
    potential.plot(pos=(t, potential_energy))
    energy.plot(pos=(t, kinetic_energy + potential_energy))

    # update time and position
    t += dt
    s.pos += s.velocity * dt + 0.5 * s.accel * dt**2
    s.velocity += s.accel * dt
    rate(1 / dt)
    print(s.pos)

    # collisions
    if not -xmax / 2 < s.pos.x < xmax / 2:
        s.velocity.x = -s.velocity.x
    if not -ymax / 2 < s.pos.y < ymax / 2:
        s.velocity.y = -s.velocity.y
Exemplo n.º 23
0
    k1 = h * f(r, t)
    k2 = h * f(r + 0.5 * k1, t + 0.5 * h)
    k3 = h * f(r + 0.5 * k2, t + 0.5 * h)
    k4 = h * f(r + k3, t + h)

    r += (k1 + 2 * k2 + 2 * k3 + k4) / 6

if part in ['a']:
    figure(1)
    clf()
    title("theta(t)")
    plot(tpoints, thetapoints)
    xlabel("t")
    ylabel("theta")

if part in ['b']:
    scene = canvas(width=500,
                   height=500,
                   center=vector(0, 0, 0),
                   background=color.black)

    # sphere with radius of 5 cm
    bob = sphere(pos=vector(l, 0, 0), radius=0.01, color=color.red)

    it = 0
    for t in arange(0, 1e6, 0.1):
        angle = thetapoints[it] - pi / 2
        rate(60)  # steps per second
        bob.pos = vector(l * cos(angle), l * sin(angle), 0)
        it = it + 1
Exemplo n.º 24
0
 def rate(framerate: int) -> None:
     """Alias for vpython.rate(framerate). Basically sleeps 1/framerate"""
     vpython.rate(framerate)
Exemplo n.º 25
0
from vpython import sphere,rate, vector
from math import cos,sin,pi
from numpy import arange

s = sphere(pos=vector(1, 0, 0), radius=0.1)
for theta in arange(0, 10*pi, .1):
    rate(100)
    x = cos(theta)
    y = sin(theta)
    s.pos = vector(x, y, 0)
import vpython as vp
from robot_imu import RobotImu, ImuFusion
from delta_timer import DeltaTimer
import imu_settings

imu = RobotImu(gyro_offsets=imu_settings.gyro_offsets)
fusion = ImuFusion(imu)

vp.graph(xmin=0, xmax=60, scroll=True)
graph_pitch = vp.gcurve(color=vp.color.red)
graph_roll = vp.gcurve(color=vp.color.green)

timer = DeltaTimer()
while True:
    vp.rate(100)
    dt, elapsed = timer.update()
    fusion.update(dt)
    graph_pitch.plot(elapsed, fusion.pitch)
    graph_roll.plot(elapsed, fusion.roll)
Exemplo n.º 27
0
    # Make a binary system
    STARS = celest.create_binary_system(bounds=bounds)

    # Data for running the simulation and plotting
    years = 0
    times = list()
    num_asteroids = list()
    avg_distance_from_star_A = list()
    avg_distance_from_star_B = list()
    average_asteroid_mass = list()
    # Animate the simulation
    while years <= 20 and len(PLANETESIMALS) > 0:
        mov.update_positions(PLANETESIMALS, STARS)
        mov.bounding_box(PLANETESIMALS, bounds)
        mov.bounding_box(STARS, bounds)
        vp.rate(30)
        # Update the logged information
        times.append(years)
        avg_distance_from_star_A.append(
            ut.average_distance_to_object(PLANETESIMALS, STARS[0]))
        avg_distance_from_star_B.append(
            ut.average_distance_to_object(PLANETESIMALS, STARS[1]))
        num_asteroids.append(len(PLANETESIMALS))
        average_asteroid_mass.append(ut.average_asteroid_mass(PLANETESIMALS))
        # Update time counter
        years += dt / YEAR

    # Now plot the information collected
    plt.plot(times, num_asteroids)
    plt.xlabel("Time (years)")
    plt.ylabel("Number of planetesimals")
    T = RK4(T, S, t)

    #Calculando a posição e velocidade de Jupiter no próximo passo.
    Gm = Gm1
    S = array([Tx[n], Tvx[n], Ty[n], Tvy[n]])
    J = RK4(J, S, t)

    n += 1
    t += h  #Evoluindo o tempo t atual

#plot(xT,yT)     #Plotando a orbita da Terra
#plot(xJ,yJ)     #Plotando a orbita de Jupiter
#show()

scene = canvas(width=900,
               height=500,
               center=vector(0, 0, 0),
               background=color.black)

#T1 = sphere(pos=vector(0,0,0),radius=e*6.3781*10**6,color = color.blue)     #Terra
#J1 = sphere(pos=vector(0,0,0),radius=e*7.1492*10**7,color = color.orange)     #Jupiter
#S1 = sphere(pos=vector(0,0,0),radius=e*6.96340*10**8,color = color.white)     #Sol

T1 = sphere(pos=vector(0, 0, 0), radius=10**10, color=color.blue)  #Terra
J1 = sphere(pos=vector(0, 0, 0), radius=10**10, color=color.orange)  #Jupiter
S1 = sphere(pos=vector(0, 0, 0), radius=10**10, color=color.white)  #Sol

for i in range(n):
    rate(700)
    T1.pos = vector(Tx[i], Ty[i], 0)
    J1.pos = vector(Jx[i], Jy[i], 0)
Exemplo n.º 29
0
import vpython as vp
import numpy as np
from math import pi, cos, sin

# L = 5
# for i in range(-L,L+1):
#     for j in range(-L,L+1):
#         for k in range(-L,L+1):
#             if ((i+j+k) % 2 == 0 ):
#                 vp.sphere(pos=vp.vector(i,j,k), radius = 0.5, color = vp.vector(1,0,0))
#             else:
#                 vp.sphere(pos=vp.vector(i,j,k), radius = 0.2, color = vp.vector(0,0,1))


def sphere_position(t):
    x = 10 * (cos(10 + t))
    y = 10 * (sin(10 + t))

    return vp.vector(x, y, 0)


t = 0
esfera = vp.sphere(pos=sphere_position(t), radius=1, color=vp.vector(1, 0, 0))
fio = vp.cylinder(pos=sphere_position(t), axis=vp.vector(0, 0, 0), radius=1)
while t <= 20 * pi:
    vp.rate(10)
    esfera.pos = sphere_position(t)
    fio.pos = sphere_position(t)
    t = t + 0.1 * pi
Exemplo n.º 30
0
vp.label(pos=vp.vector(a1 * 4, 0, rpv_offset), text='0')
vp.label(pos=vp.vector(0, a1 * 4, rpv_offset), text='90')
vp.label(pos=vp.vector(-a1 * 4, 0, rpv_offset), text='180')
vp.label(pos=vp.vector(0, -a1 * 4, rpv_offset), text='270')
vp.local_light(pos=vp.vector(0, 0, -10), color=vp.color.gray(0.2))

scan_pts = calc_scan_pts(scan_length, scan_index_angle)
num_pts = int(size(scan_pts) / len(scan_pts))
# vp.scene.camera.pos = vp.vector(scan_pts[0][num_pts - 1], scan_pts[1][num_pts - 1], scan_pts[2][num_pts - 1])

# Loop through scan points, assume configuration 1 first
config = 1
for j in range(num_pts):
    # Set the loop rate to be equivalent to the desired scan velocity.
    if sim_true_scan_speed:
        vp.rate(scan_vel / scan_res)

    j2, j3, j4, pvt, ee = c_jpos(scan_pts[:, j], config)
    t1, t2, t3, t4 = c_angles(scan_pts[:, j], config)

    #  Check if end effector is in the scan location
    if calc_pos_err_check(ee, scan_pts[:, j]):
        config = ~config
        j2, j3, j4, pvt, ee = c_jpos(scan_pts[:, j], 1)
        t1, t2, t3, t4 = c_angles(scan_pts[:, j], 1)

    if calc_pos_err_check(ee, scan_pts[:, j]):
        # If problems, print the joint set and leave a red curve of the manipulator
        print_joint_set(t1, t2, t3, t4)
        vp.curve(
            pos=[(0, 0, 0), (j2[0], j2[1], j2[2]), (j3[0], j3[1], j3[2]), (j4[0], j4[1], j4[2]),
Exemplo n.º 31
0
    def initRender(self):
        self.canvas = canvas(width=1200, height=900, title='Car-3D')
        # self.canvas = canvas(width=1660, height=1010, title='Car-3D')
        ground_y = 0.17
        thk = 0.1
        ground_width = 10.0
        wallB = box(canvas=self.canvas,
                    pos=vector(0, -ground_y, 0),
                    size=vector(ground_width, thk, ground_width),
                    color=color.blue)

        # vector:(front/rear,z,l/r)

        car_w, car_l, car_h = 0.132, 0.26 / 0.6, 0.2
        wheel_r, wheel_h = 0.095, 0.035
        chassis = box(canvas=self.canvas,
                      pos=vector(0, wheel_r + 0.05, 0),
                      size=vector(car_l, car_h, car_w),
                      color=color.green)

        wheel_r / 2 + thk
        wheel1 = cylinder(pos=vector(0.6 * car_l / 2.0, wheel_r, car_w / 2.0),
                          axis=vector(0, 0, wheel_h),
                          radius=wheel_r,
                          color=color.blue)
        wheel2 = cylinder(pos=vector(0.6 * car_l / 2.0, wheel_r,
                                     -car_w / 2.0 - wheel_h),
                          axis=vector(0, 0, wheel_h),
                          radius=wheel_r,
                          color=color.blue)
        wheel3 = cylinder(pos=vector(-0.6 * car_l / 2.0, wheel_r, car_w / 2.0),
                          axis=vector(0, 0, wheel_h),
                          radius=wheel_r,
                          color=color.blue)
        wheel4 = cylinder(pos=vector(-0.6 * car_l / 2.0, wheel_r,
                                     -car_w / 2.0 - wheel_h),
                          axis=vector(0, 0, wheel_h),
                          radius=wheel_r,
                          color=color.blue)

        self.car = compound([chassis, wheel3, wheel4],
                            pos=vector(self.x_pos, self.y_pos, self.z_pos),
                            make_trail=True,
                            retain=300)
        self.frontwheel = compound([wheel1, wheel2],
                                   pos=vector(self.x_pos, self.y_pos,
                                              self.z_pos))
        self.car.axis = vector(1, 0, 0)
        self.car.up = vector(0, 1, 0)
        self.car.mass = self.car_mass

        self.pointer = arrow(pos=self.car.pos,
                             axis=self.car.axis,
                             shaftwidth=0.01)
        origin = sphere(pos=vector(0, 0, 0), radius=0.02)

        self.x_axis = arrow(pos=vector(0, 0, 0),
                            axis=vector(0, 0, 3),
                            shaftwidth=0.3,
                            color=color.red)
        self.y_axis = arrow(pos=vector(0, 0, 0),
                            axis=vector(3, 0, 0),
                            shaftwidth=0.3,
                            color=color.blue)
        self.z_axis = arrow(pos=vector(0, 0, 0),
                            axis=vector(0, 3, 0),
                            shaftwidth=0.3,
                            color=color.green)
        rate(FPS)
Exemplo n.º 32
0
                        pos=vp.vector(-60, -8, 0),
                        text="Velocity" + str(setpoint_plot[i] * rad2deg),
                        xoffset=0,
                        zoffset=0,
                        yoffset=0,
                        space=30,
                        height=30,
                        border=0,
                        font='sans',
                        box=False,
                        line=False,
                        align="left")

    i = 0
    for i in range(len(theta_3D) - 2):
        vp.rate(1000 / slow_mo)  #60 FPS

        # How much to move each time-step , X and Z are the rocket's axes, not the world's
        delta_pos_X = (Position_3D[i + 1][0] - Position_3D[i][0])
        delta_pos_Z = (Position_3D[i + 1][1] - Position_3D[i][1])

        # Moving the rocket
        rocket.pos.y += delta_pos_X
        rocket.pos.x += delta_pos_Z

        # Creates a cg and cp vector with reference to the origin of the 3D rocket (not the math model rocket)
        xcg_radius = loc2glob((L - xcg), 0, theta_3D[i])
        xa_radius = loc2glob(
            xa_3D[i + 1] - xa_3D[i], 0, theta_3D[i]
        )  #Delta xa_radius, this is then integrated when you move the Aerodynamic Force arrow
Exemplo n.º 33
0
                                     np.random.uniform(bounds[1][0], bounds[1][1]),
                                     np.random.uniform(bounds[2][0], bounds[2][1])),
                        color=v.color.red, radius=0.03) for x in range(tot_sphere)]

# nb_case_possible = h_cube*l_cube*w_cube
# dimension = 3
# surface_stator = stator_number * ((stator_r/10)**2 *np.pi)
# surf_cube = a**2
# surf_stator_cube = surface_stator/surf_cube  # nombre de cube correspondant a la surface total des stators
# proba_in_stator = (1/(2*dimension))*(surf_stator_cube/nb_case_possible)  # proba pour une bille de passer dans un stator
N_dt = []
list_dt = []

while tot_time < 1500000:
    #
    v.rate(1000000)

    for sphere in list_sphere:

        choose_dir = random.choice(["x", "y", "z"])
        if choose_dir == "x":
            x = random.choice([-a, a])
            dr = v.vector(x, 0, 0)

        elif choose_dir == "y":
            y = random.choice([-a, a])
            dr = v.vector(0, y, 0)

        else:
            z = random.choice([-a, a])
            dr = v.vector(0, 0, z)
Exemplo n.º 34
0
Arquivo: ball.py Projeto: lgarcin/Math
'''
Created on 8 juil. 2012

@author: Laurent
'''
from vpython import box, sphere, vector, color, rate

floor = box(pos=vector(0, 0, 0), length=4, height=0.5, width=4, color=color.blue)
ball = sphere(pos=vector(0, 4, 0), radius=1, color=color.red)
ball.velocity = vector(0, -1, 0)
dt = 0.01

while 1:
    rate(100)
    ball.pos = ball.pos + ball.velocity * dt
    if ball.pos.y < ball.radius:
        ball.velocity.y = abs(ball.velocity.y)
    else:
        ball.velocity.y = ball.velocity.y - 9.8 * dt
Exemplo n.º 35
0
w = sqrt((q / m) * k)  # omega
f = w / (2 * pi)
dt = 1 / f / kappa
I = zeros(N_t)
particle = sphere(pos=r,
                  radius=0.5e-3,
                  color=color.green,
                  make_trail=True,
                  retain=100)
v -= dt * (q / m) * E(particle.pos) / 2
for i in range(N_t):
    v += dt * (q / m) * E(particle.pos)
    particle.pos += dt * v
    I[i] = v.z / v_phi
    rate(50)

# spectral analysis

I_spec = fft(I)
m = zeros(N_t)
for i in range(1, N_t // 2):
    w = 2 * pi * i / (N_t * dt)
    m[i] = k * q / w**2

# plot

plt.figure("Test Ion: Carbon")
plt.xlabel("m / u")
plt.ylabel("normalized density")
plt.xlim(0, 50)