def __init__(self, pos, charge, mass, radius, color, vel, fixed,
              negligible):
     """ Creates a new particle with specified properties (in SI units)
             pos: XYZ starting position of the particle, in meters
             charge: charge of the particle, in Coulombs
             mass: mass of the particle, in kg
             radius: radius of the particle, in meters. No effect on simulation
             color: color of the particle. If None, a default color will be chosen
             vel: initial velocity vector, in m/s
             fixed: if True, particle will remain fixed in place 
             negligible: assume charge is small wrt other charges to speed up calculation
     """
     self.pos = vector(pos)
     self.radius = radius
     self.charge = charge
     self.mass = mass
     self.vel = vector(vel)
     self.fixed = fixed
     self.negligible = negligible
     self.color = color
     if vp:
         self.vtk_actor = vp.add(sphere(
             pos, r=radius, c=color))  # Sphere representing the particle
         # vp.addTrail(alpha=0.4, maxlength=1, n=50)
         # Add a trail behind the particle
         self.vtk_actor.addTrail(alpha=0.4, maxlength=1, n=50)
Exemplo n.º 2
0
def myfnc(key):
    if not vp.clickedActor or key != 'c':
        printc('click an actor and press c.', c='r')
        return

    cb = sphere(pos=vp.picked3d, r=.05, c='v')
    vp.render(cb)

    printc('clicked actor   :', vp.clickedActor.legend, c=4)
    printc('clicked 3D point:', vp.picked3d, c=4)
    printc('clicked renderer:', vp.clickedRenderer, c=2)
Exemplo n.º 3
0
    def draw_shapes(self):
        
        pos, sz = self.s_size[0], self.s_size[1]
        
        sphere0 = sphere(pos, c='gray', r=sz, alpha=.8, wire=1, res=16)
        sphere1 = sphere(pos, c='gray', r=sz, alpha=.2, res=16)

        hairsacts=[]
        for i in range(sphere0.N()):
            p = sphere0.point(i)
            newp = self.transform(p)
            sphere1.point(i, newp)
            hairsacts.append( arrow(p, newp, s=0.3, alpha=.5) )

        zero = vp.point(pos, c='black')
        x1,x2, y1,y2, z1,z2 = self.target.polydata().GetBounds()
        tpos = [x1, y2, z1]
        text1 = vp.text('source vs target',  tpos, s=sz/10, c='dg')
        text2 = vp.text('morphed vs target', tpos, s=sz/10, c='dg')
        text3 = vp.text('deformation',       tpos, s=sz/10, c='dr')

        vp.show([sphere0, sphere1, zero, text3] + hairsacts, at=2)
        vp.show([self.msource, self.target, text2], at=1) 
        vp.show([self.source, self.target, text1], at=0, zoom=1.2, interactive=1)
Exemplo n.º 4
0
def myloop(*event):
    global counts  # this is needed because counts is being modified:
    counts += 0.1

    # reference 'actor' is not modified so doesnt need to be global
    # (internal properties of the object are, but python doesn't know..)
    actor.pos([0, counts / 20, 0]).color(counts)  # move cube and change color

    rp = [u(-1, 1), u(0, 1), u(-1, 1)]  # a random position
    s = sphere(rp, r=0.05, c='blue 0.2')
    vp.render(s, resetcam=True)  # show() would cause exiting the loop

    # waste cpu time to slow down program
    for i in range(100000):
        sin(i)
    printc('#', end='')
Exemplo n.º 5
0
vp = Plotter(title='gas in toroid', verbose=0, axes=0)

vp.add(torus(c='g', r=RingRadius, thickness=RingThickness, alpha=.1, wire=1)) ### <--

Atoms = []
poslist = []
plist, mlist, rlist = [],[],[]
mass = Matom*Ratom**3/Ratom**3
pavg = np.sqrt(2.*mass*1.5*k*T) # average kinetic energy p**2/(2mass) = (3/2)kT

for i in range(Natoms):
    alpha = 2*np.pi*random()
    x = RingRadius*np.cos(alpha)*.9
    y = RingRadius*np.sin(alpha)*.9
    z = 0
    Atoms = Atoms + [vp.add(sphere(pos=(x,y,z), r=Ratom, c=i))]              ### <--
    theta = np.pi*random()
    phi   = 2*np.pi*random()
    px = pavg*np.sin(theta)*np.cos(phi)
    py = pavg*np.sin(theta)*np.sin(phi)
    pz = pavg*np.cos(theta)
    poslist.append((x,y,z))
    plist.append((px,py,pz))
    mlist.append(mass)
    rlist.append(Ratom)

pos = np.array(poslist)
poscircle = pos
p = np.array(plist)
m = np.array(mlist)
m.shape = (Natoms, 1) 
Exemplo n.º 6
0
# Generate a time sequence of 3D shapes (from a sphere to a tetrahedron)
# as noisy cloud points, and smooth it with Moving Least Squares (smoothMLS3D).
# This make a simultaneus fit in 4D (space+time).
# smoothMLS3D method returns a vtkActor where points are color coded
# in bins of fitted time.
# Data itself can suggest a meaningful time separation based on the spatial
# distribution of points.
# The nr neighbours in the local 4D fitting must be specified.
#
import numpy as np
from vtkplotter import Plotter, sphere, smoothMLS3D

vp = Plotter(N=2, axes=0)

# generate uniform points on sphere (tol separates points by 2% of actor size)
cc = sphere(res=200).clean(tol=0.02).coordinates()

a, b, noise = .2, .4, .1  # some random warping paramenters, and noise factor
for i in range(5):  # generate a time sequence of 5 shapes
    cs = cc + a * i * cc**2 + b * i * cc**3  # warp sphere in weird ways
    # set absolute time of points actor, and add 1% noise on positions
    vp.points(cs, c=i, alpha=0.5).gaussNoise(1.0).time(0.2 * i)
    vp.show(at=0, zoom=1.4)  # show input clouds as func(time)

asse = smoothMLS3D(vp.actors, neighbours=50)

vp.addScalarBar3D(asse, at=1, pos=(-2, 0, -1))  # color indicates fitted time
vp.show(asse, at=1, zoom=1.4, axes=4, interactive=1)
Exemplo n.º 7
0
# Example of boolean operations with actors or polydata
#
from vtkplotter import Plotter, booleanOperation, sphere

# declare the instance of the class
vp = Plotter(shape=(2, 2), interactive=0, axes=3)

# build to sphere actors
s1 = sphere(pos=[-.7, 0, 0], c='r', alpha=0.5)
s2 = sphere(pos=[0.7, 0, 0], c='g', alpha=0.5)

# make 3 different possible operations:
b1 = booleanOperation(s1, 'intersect', s2, c='m')
b2 = booleanOperation(s1, 'plus', s2, c='b', wire=True)
b3 = booleanOperation(s1, 'minus', s2, c=None)

# show the result in 4 different subwindows 0->3
vp.show([s1, s2], at=0, legend='2 spheres')
vp.show(b1, at=1, legend='intersect')
vp.show(b2, at=2, legend='plus')
vp.show(b3, at=3, legend='minus')
vp.addScalarBar()  # adds a scalarbar to the last actor
vp.show(interactive=1)
Exemplo n.º 8
0
# Work with vtkVolume objects and surfaces.
#
from vtkplotter import loadImageData, Plotter, Volume, sphere

vp = Plotter()

# Load a 3D voxel dataset (returns a vtkImageData object):
img = loadImageData('data/embryo.slc', spacing=[1, 1, 1])

# Build a vtkVolume object.
# A set of transparency values - of any length - can be passed
# to define the opacity transfer function in the range of the scalar.
#  E.g.: setting alphas=[0, 0, 0, 1, 0, 0, 0] would make visible
#  only voxels with value close to 98.5 (see print output).
vol = Volume(img, c='green', alphas=[0, 0.4, 0.9, 1])  # vtkVolume

# can relocate volume in space:
#vol.scale(0.3).pos([10,100,0]).rotate(90, axis=[0,1,1])

sph = sphere(pos=[100, 100, 100], r=20)  # add a dummy surface

vp.show([vol, sph], zoom=1.4)  # show both vtkVolume and vtkActor
Exemplo n.º 9
0
    ListPos.append(PossiblePos[n])
    del PossiblePos[n]
Pos = np.array(ListPos)

# Create an array with all the radius and a list with all the masses
Radius = np.concatenate((np.array([Rb]), np.array([Rs] * (Nsp - 1))))
Mass = [1.0] + [Ms] * (Nsp - 1)

# Create the initial array of velocities at random with big sphere at rest
ListVel = [(0., 0.)]
for s in range(1, Nsp):
    ListVel.append((Rb * random.uniform(-1, 1), Rb * random.uniform(-1, 1)))
Vel = np.array(ListVel)

# Create the spheres
Spheres = [vp.add(sphere(pos=(Pos[0][0], Pos[0][1], 0), r=Radius[0], c='red'))]
for s in range(1, Nsp):
    a = vp.add(sphere(pos=(Pos[s][0], Pos[s][1], 0), r=Radius[s], c='blue'))
    Spheres.append(a)
vp.add(grid(sx=screen_w, sy=screen_w))

# Auxiliary variables
Id = np.identity(Nsp)
Dij = (Radius + Radius[:, np.newaxis])**2  # Matrix Dij=(Ri+Rj)**2

# The main loop
pb = ProgressBar(0, 2000, c='r')
for i in pb.range():
    # Update all positions
    np.add(Pos, Vel * Dt, Pos)  # Fast version of Pos = Pos + Vel*Dt
Exemplo n.º 10
0
# Shrink the triangulation of a mesh to make the inside visible
#
from vtkplotter import Plotter, sphere


vp = Plotter()

vp.load('data/shapes/teapot.vtk').shrink(0.75)

vp.add(sphere(r=0.2).pos([0,0,-0.5]))

vp.show(viewup='z')

Exemplo n.º 11
0
from vtkplotter import Plotter, sphere
from vtkplotter.analysis import surfaceIntersection

vp = Plotter()

# alpha value (opacity) can be put in color string separated by space,/
car = vp.load('data/shapes/porsche.ply', c='gold, 0.1')
s = sphere(r=4, c='v/0.1', wire=1)  # color is violet with alpha=0.1

# Intersect car with sphere, c=black, lw=line width
contour = surfaceIntersection(car, s, c='k', lw=4)

vp.show([car, contour, s], zoom=1.3)
Exemplo n.º 12
0
# Example usage of addTrail()
#
from vtkplotter import Plotter, sin, sphere

vp = Plotter(axes=6)

s = sphere(c='green', res=24)
vp.cutPlane(s, [-0.9, 0, 0], showcut=True)  #cut left part of sphere

p = vp.point([1, 1, 1], r=12)

# add a trail to point p with maximum length 0.5 and 50 segments
p.addTrail(c='k', lw=3, maxlength=0.5, n=50)

for i in range(200):
    p.pos([-2 + i / 100., sin(i / 5.) / 15, 0])
    vp.render()
    vp.camera.Azimuth(-0.2)

vp.show(resetcam=0)
Exemplo n.º 13
0
for k in range(1, N + 1):
    alpha = np.pi / 5 * k / 10
    bob_x.append(bob_x[k - 1] + np.cos(alpha) + np.random.normal(0, .1))
    bob_y.append(bob_y[k - 1] + np.sin(alpha) + np.random.normal(0, .1))

# Create the bobs
vp = Plotter(title="Multiple Pendulum", axes=0, verbose=0)
vp.add(
    box(pos=(bob_x[0], bob_y[0], 0),
        length=12,
        width=12,
        height=.7,
        c='k',
        wire=1))
bob = [vp.add(sphere(pos=(bob_x[0], bob_y[0], 0), r=R / 2, c='gray'))]
for k in range(1, N + 1):
    bob.append(
        vp.add(cylinder(pos=(bob_x[k], bob_y[k], 0), r=R, height=.3, c=k)))

# Create the springs out of N links
link = [0] * N
for k in range(N):
    p0 = bob[k].pos()
    p1 = bob[k + 1].pos()
    link[k] = vp.add(helix(p0, p1, thickness=.015, r=R / 3, c='gray'))

# Create some auxiliary variables
x_dot_m = [0] * (N + 1)
y_dot_m = [0] * (N + 1)
dij = [0] * (N + 1)  # array with distances to previous bob
Exemplo n.º 14
0
    pts = []
    for i, longs in enumerate(agrid_reco):
        ilat = grid_reco.lats()[i]
        for j, value in enumerate(longs):
            ilong = grid_reco.lons()[j]
            th = (90 - ilat) / 57.3
            ph = ilong / 57.3
            r = value + rbias
            p = np.array([sin(th) * cos(ph), sin(th) * sin(ph), cos(th)]) * r
            pts.append(p)
    return pts


vp = Plotter(shape=[2, 2], verbose=0, axes=3, interactive=0)

shape1 = sphere(alpha=0.2)
shape2 = vp.load('data/shapes/icosahedron.vtk').normalize().lineWidth(1)

agrid1, actorpts1 = makegrid(shape1, N)
vp.show(at=0, actors=[shape1, actorpts1])

agrid2, actorpts2 = makegrid(shape2, N)
vp.show(at=1, actors=[shape2, actorpts2])
vp.camera.Zoom(1.2)
vp.interactive = False

clm1 = pyshtools.SHGrid.from_array(agrid1).expand()
clm2 = pyshtools.SHGrid.from_array(agrid2).expand()
# clm1.plot_spectrum2d() # plot the value of the sph harm. coefficients
# clm2.plot_spectrum2d()
Exemplo n.º 15
0
# ############################################################
g, r = 9.81, Lshaft / 2
I3 = 1 / 2 * M * R**2  # moment of inertia, I, of gyroscope about its own axis
I1 = M * r**2 + 1 / 2 * I3  # I about a line through the support, perpendicular to axis
phi = psi = thetadot = 0
x = vector(theta, phi, psi)  # Lagrangian coordinates
v = vector(thetadot, phidot, psidot)

# ############################################################ the scene
vp = Plotter(verbose=0, axes=0, interactive=0)

shaft = cylinder([[0, 0, 0], [Lshaft, 0, 0]], r=.03, c='dg')
rotor = cylinder([[Lshaft / 2.2, 0, 0], [Lshaft / 1.8, 0, 0]],
                 r=R,
                 texture='marble')
base = sphere([0, 0, 0], c='dg', r=.03)
tip = sphere([Lshaft, 0, 0], c='dg', r=.03)
gyro = vp.Assembly([shaft, rotor, base, tip])  # group relevant actors

pedestal = box([0, -0.63, 0], height=.1, length=.1, width=1, texture='wood5')
pedbase = box([0, -1.13, 0], height=.5, length=.5, width=.05, texture='wood5')
pedpin = pyramid([0, -.08, 0],
                 axis=[0, 1, 0],
                 s=.05,
                 height=.12,
                 texture='wood5')
vp.add([pedestal, pedbase, pedpin])
formulas = vp.load('data/images/gyro_formulas.png', alpha=.9)
formulas.scale(.0035).pos(-1.4, -1.1, -1.1)

# ############################################################ the physics