Exemplo n.º 1
0
 def compute_weighte_average_score(match):
     """ old scoring measure """
     import vtool as vt
     # Get distinctivness and forground of matching points
     fx1_list, fx2_list = match.fm.T
     annot1 = match.annot1
     annot2 = match.annot2
     dstncvs1 = annot1.dstncvs.take(fx1_list)
     dstncvs2 = annot2.dstncvs.take(fx2_list)
     fgweight1 = annot1.fgweights.take(fx1_list)
     fgweight2 = annot2.fgweights.take(fx2_list)
     dstncvs = np.sqrt(dstncvs1 * dstncvs2)
     fgweight = np.sqrt(fgweight1 * fgweight2)
     fsv = np.vstack((match.fs, dstncvs, fgweight)).T
     fs_new = vt.weighted_average_scoring(fsv, [0], [1, 2])
     weight_ave_score = fs_new.sum()
     return weight_ave_score
Exemplo n.º 2
0
    def compute_weighte_average_score(match):
        """ old scoring measure """
        import vtool as vt

        # Get distinctivness and forground of matching points
        fx1_list, fx2_list = match.fm.T
        annot1 = match.annot1
        annot2 = match.annot2
        dstncvs1 = annot1.dstncvs.take(fx1_list)
        dstncvs2 = annot2.dstncvs.take(fx2_list)
        fgweight1 = annot1.fgweights.take(fx1_list)
        fgweight2 = annot2.fgweights.take(fx2_list)
        dstncvs = np.sqrt(dstncvs1 * dstncvs2)
        fgweight = np.sqrt(fgweight1 * fgweight2)
        fsv = np.vstack((match.fs, dstncvs, fgweight)).T
        fs_new = vt.weighted_average_scoring(fsv, [0], [1, 2])
        weight_ave_score = fs_new.sum()
        return weight_ave_score
Exemplo n.º 3
0
def apply_new_qres_filter_scores(qreq_vsone_, qres_vsone, newfsv_list,
                                 newscore_aids, filtkey):
    r"""
    applies the new filter scores vectors to a query result and updates other
    scores

    Args:
        qres_vsone (QueryResult):  object of feature correspondences and scores
        newfsv_list (list):
        newscore_aids (?):
        filtkey (?):

    CommandLine:
        python -m ibeis.algo.hots.special_query --test-apply_new_qres_filter_scores

    Example:
        >>> # DISABLE_DOCTEST
        >>> from ibeis.algo.hots.special_query import *  # NOQA
        >>> ibs, valid_aids = testdata_special_query()
        >>> qaids = valid_aids[0:1]
        >>> daids = valid_aids[1:]
        >>> qaid = qaids[0]
        >>> filtkey = hstypes.FiltKeys.DISTINCTIVENESS
        >>> use_cache = False
        >>> qaid2_qres_vsmany, qreq_vsmany_ = query_vsmany_initial(ibs, qaids, daids, use_cache)
        >>> vsone_query_pairs = build_vsone_shortlist(ibs, qaid2_qres_vsmany)
        >>> qaid2_qres_vsone, qreq_vsone_ = query_vsone_pairs(ibs, vsone_query_pairs, use_cache)
        >>> qreq_vsone_.load_score_normalizer()
        >>> qres_vsone = qaid2_qres_vsone[qaid]
        >>> qres_vsmany = qaid2_qres_vsmany[qaid]
        >>> top_aids = vsone_query_pairs[0][1]
        >>> newfsv_list, newscore_aids = get_new_qres_distinctiveness(qres_vsone, qres_vsmany, top_aids, filtkey)
        >>> apply_new_qres_filter_scores(qreq_vsone_, qres_vsone, newfsv_list, newscore_aids, filtkey)

    Ignore:
        qres_vsone.show_top(ibs, name_scoring=True)
        print(qres_vsone.get_inspect_str(ibs=ibs, name_scoring=True))

        print(qres_vsmany.get_inspect_str(ibs=ibs, name_scoring=True))

    """
    assert ut.listfind(qres_vsone.filtkey_list, filtkey) is None
    # HACK to update result cfgstr
    qres_vsone.filtkey_list.append(filtkey)
    qres_vsone.cfgstr = qreq_vsone_.get_cfgstr()
    # Find positions of weight filters and score filters
    # so we can apply a weighted average
    #numer_filters  = [hstypes.FiltKeys.LNBNN, hstypes.FiltKeys.RATIO]

    weight_filters = hstypes.WEIGHT_FILTERS
    weight_filtxs, nonweight_filtxs = vt.index_partition(
        qres_vsone.filtkey_list, weight_filters)

    for new_fsv_vsone, daid in zip(newfsv_list, newscore_aids):
        #scorex_vsone  = ut.listfind(qres_vsone.filtkey_list, filtkey)
        #if scorex_vsone is None:
        # TODO: add spatial verification as a filter score
        # augment the vsone scores
        # TODO: paramaterize
        weighted_ave_score = True
        if weighted_ave_score:
            # weighted average scoring
            new_fs_vsone = vt.weighted_average_scoring(new_fsv_vsone,
                                                       weight_filtxs,
                                                       nonweight_filtxs)
        else:
            # product scoring
            new_fs_vsone = product_scoring(new_fsv_vsone)
        new_score_vsone = new_fs_vsone.sum()
        qres_vsone.aid2_fsv[daid] = new_fsv_vsone
        qres_vsone.aid2_fs[daid] = new_fs_vsone
        qres_vsone.aid2_score[daid] = new_score_vsone
        # FIXME: this is not how to compute new probability
        #if qres_vsone.aid2_prob is not None:
        #    qres_vsone.aid2_prob[daid] = qres_vsone.aid2_score[daid]

    # This is how to compute new probability
    if qreq_vsone_.qparams.score_normalization:
        # FIXME: TODO: Have unsupported scores be represented as Nones
        # while score normalizer is still being trained.
        normalizer = qreq_vsone_.normalizer
        daid2_score = qres_vsone.aid2_score
        score_list = list(six.itervalues(daid2_score))
        daid_list = list(six.iterkeys(daid2_score))
        prob_list = normalizer.normalize_score_list(score_list)
        daid2_prob = dict(zip(daid_list, prob_list))
        qres_vsone.aid2_prob = daid2_prob
Exemplo n.º 4
0
def apply_new_qres_filter_scores(qreq_vsone_, qres_vsone, newfsv_list, newscore_aids, filtkey):
    r"""
    applies the new filter scores vectors to a query result and updates other
    scores

    Args:
        qres_vsone (QueryResult):  object of feature correspondences and scores
        newfsv_list (list):
        newscore_aids (?):
        filtkey (?):

    CommandLine:
        python -m ibeis.algo.hots.special_query --test-apply_new_qres_filter_scores

    Example:
        >>> # DISABLE_DOCTEST
        >>> from ibeis.algo.hots.special_query import *  # NOQA
        >>> ibs, valid_aids = testdata_special_query()
        >>> qaids = valid_aids[0:1]
        >>> daids = valid_aids[1:]
        >>> qaid = qaids[0]
        >>> filtkey = hstypes.FiltKeys.DISTINCTIVENESS
        >>> use_cache = False
        >>> qaid2_qres_vsmany, qreq_vsmany_ = query_vsmany_initial(ibs, qaids, daids, use_cache)
        >>> vsone_query_pairs = build_vsone_shortlist(ibs, qaid2_qres_vsmany)
        >>> qaid2_qres_vsone, qreq_vsone_ = query_vsone_pairs(ibs, vsone_query_pairs, use_cache)
        >>> qreq_vsone_.load_score_normalizer()
        >>> qres_vsone = qaid2_qres_vsone[qaid]
        >>> qres_vsmany = qaid2_qres_vsmany[qaid]
        >>> top_aids = vsone_query_pairs[0][1]
        >>> newfsv_list, newscore_aids = get_new_qres_distinctiveness(qres_vsone, qres_vsmany, top_aids, filtkey)
        >>> apply_new_qres_filter_scores(qreq_vsone_, qres_vsone, newfsv_list, newscore_aids, filtkey)

    Ignore:
        qres_vsone.show_top(ibs, name_scoring=True)
        print(qres_vsone.get_inspect_str(ibs=ibs, name_scoring=True))

        print(qres_vsmany.get_inspect_str(ibs=ibs, name_scoring=True))

    """
    assert ut.listfind(qres_vsone.filtkey_list, filtkey) is None
    # HACK to update result cfgstr
    qres_vsone.filtkey_list.append(filtkey)
    qres_vsone.cfgstr = qreq_vsone_.get_cfgstr()
    # Find positions of weight filters and score filters
    # so we can apply a weighted average
    #numer_filters  = [hstypes.FiltKeys.LNBNN, hstypes.FiltKeys.RATIO]

    weight_filters = hstypes.WEIGHT_FILTERS
    weight_filtxs, nonweight_filtxs = vt.index_partition(qres_vsone.filtkey_list, weight_filters)

    for new_fsv_vsone, daid in zip(newfsv_list, newscore_aids):
        #scorex_vsone  = ut.listfind(qres_vsone.filtkey_list, filtkey)
        #if scorex_vsone is None:
        # TODO: add spatial verification as a filter score
        # augment the vsone scores
        # TODO: paramaterize
        weighted_ave_score = True
        if weighted_ave_score:
            # weighted average scoring
            new_fs_vsone = vt.weighted_average_scoring(new_fsv_vsone, weight_filtxs, nonweight_filtxs)
        else:
            # product scoring
            new_fs_vsone = product_scoring(new_fsv_vsone)
        new_score_vsone = new_fs_vsone.sum()
        qres_vsone.aid2_fsv[daid]   = new_fsv_vsone
        qres_vsone.aid2_fs[daid]    = new_fs_vsone
        qres_vsone.aid2_score[daid] = new_score_vsone
        # FIXME: this is not how to compute new probability
        #if qres_vsone.aid2_prob is not None:
        #    qres_vsone.aid2_prob[daid] = qres_vsone.aid2_score[daid]

    # This is how to compute new probability
    if qreq_vsone_.qparams.score_normalization:
        # FIXME: TODO: Have unsupported scores be represented as Nones
        # while score normalizer is still being trained.
        normalizer = qreq_vsone_.normalizer
        daid2_score = qres_vsone.aid2_score
        score_list = list(six.itervalues(daid2_score))
        daid_list  = list(six.iterkeys(daid2_score))
        prob_list = normalizer.normalize_score_list(score_list)
        daid2_prob = dict(zip(daid_list, prob_list))
        qres_vsone.aid2_prob = daid2_prob