Exemplo n.º 1
0
def N2_diagram(nRows, maxDirections):

    from openmdao.api import view_tree

    # Scaling grid case
    nTurbines = nRows**2

    probg = Problem(
        root=OptAEP(nTurbines,
                    nDirections=maxDirections,
                    use_rotor_components=False,
                    wake_model=gauss_wrapper,
                    params_IdepVar_func=add_gauss_params_IndepVarComps,
                    wake_model_options={'nSamples': 0},
                    params_IndepVar_args=None))

    probf = Problem(
        root=OptAEP(nTurbines,
                    nDirections=maxDirections,
                    use_rotor_components=False,
                    wake_model=floris_wrapper,
                    differentiable=True,
                    params_IdepVar_func=add_floris_params_IndepVarComps,
                    wake_model_options=None,
                    params_IndepVar_args=None))

    # initialize problem
    probf.setup()
    probg.setup()

    view_tree(probf, show_browser=True, outfile='tree_floris.html')
    view_tree(probg, show_browser=True, outfile='tree_gauss.html')
Exemplo n.º 2
0
    axialInduction = np.zeros(nTurbines) + axial_induction
    rotorDiameter = np.zeros(nTurbines) + rotor_diameter
    generatorEfficiency = np.zeros(nTurbines) + generator_efficiency
    yaw = np.zeros(nTurbines) + yaw_init
    Ct = np.zeros(nTurbines) + CT
    Cp = np.zeros(nTurbines) + CP

    # Define site measurements
    nDirections = 1
    wind_direction = 270.-0.523599*180./np.pi
    wind_speed = 8.    # m/s
    air_density = 1.1716    

    # initialize problems
    gauss_prob = Problem(root=OptAEP(nTurbines=nTurbines, nDirections=nDirections, use_rotor_components=False,
                               wake_model=gauss_wrapper, wake_model_options={'nSamples': 0}, datasize=0,
                               params_IdepVar_func=add_gauss_params_IndepVarComps, force_fd=True,
                               params_IndepVar_args={}))

    floris_prob = Problem(root=OptAEP(nTurbines=nTurbines, nDirections=nDirections, use_rotor_components=False,
                               wake_model=floris_wrapper, wake_model_options=None, datasize=0,
                               params_IdepVar_func=add_floris_params_IndepVarComps,
                               params_IndepVar_args={}))

    jensen_prob = Problem(root=OptAEP(nTurbines=nTurbines, nDirections=nDirections, use_rotor_components=False,
                               wake_model=jensen_wrapper, wake_model_options={'variant': 'CosineYaw_1R',
                                                                              'radius multiplier': 1.0}, datasize=0,
                               params_IdepVar_func=add_jensen_params_IndepVarComps,
                               params_IndepVar_args={'use_angle': True}))

    probs = [gauss_prob, floris_prob, jensen_prob]
    names = ['gauss', 'floris', 'jensen']
Exemplo n.º 3
0
def calc_data(nRows, maxDirections, savetxt=False):

    # set up wind farm
    rotor_diameter = 126.4
    axialInduction = 1.0 / 3.0  # used only for initialization
    generatorEfficiency = 0.944
    hub_height = 90.0
    Ct = 4.0 * axialInduction * (1.0 - axialInduction)
    Cp = 0.7737 / 0.944 * 4.0 * 1.0 / 3.0 * np.power((1 - 1.0 / 3.0), 2)

    # Scaling grid case
    spacing = 4  # turbine grid spacing in diameters
    nTurbines = nRows**2

    # Set up position arrays
    points = np.linspace(start=spacing * rotor_diameter,
                         stop=nRows * spacing * rotor_diameter,
                         num=nRows)
    xpoints, ypoints = np.meshgrid(points, points)
    turbineX = np.ndarray.flatten(xpoints)
    turbineY = np.ndarray.flatten(ypoints)

    print turbineX, turbineY

    # initialize input variable arrays
    rotorDiameter = np.ones(nTurbines) * rotor_diameter
    axialInduction = np.ones(nTurbines) * axialInduction
    Ct = np.ones(nTurbines) * Ct
    Cp = np.ones(nTurbines) * Cp
    generatorEfficiency = np.ones(nTurbines) * generatorEfficiency
    yaw = np.zeros(nTurbines)
    hubHeight = np.ones(nTurbines) * hub_height

    # Define flow properties
    wind_speed = 8.0  # m/s
    air_density = 1.1716  # kg/m^3

    # initialize results arrays
    directions = np.arange(1, maxDirections + 2, 10)
    time_ex_f = np.zeros_like(directions) * 0.0
    time_ex_g = np.zeros_like(directions) * 0.0
    time_fd_f = np.zeros_like(directions) * 0.0
    time_fd_g = np.zeros_like(directions) * 0.0
    AEPf = np.zeros_like(directions)
    AEPg = np.zeros_like(directions)
    index = 0

    for d in directions:
        # set up problem

        probg = Problem(
            root=OptAEP(nTurbines,
                        nDirections=d,
                        use_rotor_components=False,
                        wake_model=gauss_wrapper,
                        params_IdepVar_func=add_gauss_params_IndepVarComps,
                        wake_model_options={'nSamples': 0},
                        params_IndepVar_args=None))

        probf = Problem(
            root=OptAEP(nTurbines,
                        nDirections=d,
                        use_rotor_components=False,
                        wake_model=floris_wrapper,
                        differentiable=True,
                        params_IdepVar_func=add_floris_params_IndepVarComps,
                        wake_model_options=None,
                        params_IndepVar_args=None))

        # initialize problem
        # profile.setup(probf)
        probf.setup()
        probg.setup()

        # assign values to constant inputs (not design variables)
        probf['turbineX'] = probg['turbineX'] = turbineX
        probf['turbineY'] = probg['turbineY'] = turbineY
        probf['hubHeight'] = probg['hubHeight'] = hubHeight
        probf['yaw0'] = probg['yaw0'] = yaw
        probf['rotorDiameter'] = probg['rotorDiameter'] = rotorDiameter
        probf['axialInduction'] = probg['axialInduction'] = axialInduction
        probf['Ct_in'] = probg['Ct_in'] = Ct
        probf['Cp_in'] = probg['Cp_in'] = Cp
        probf['generatorEfficiency'] = probg[
            'generatorEfficiency'] = generatorEfficiency
        probf['windSpeeds'] = probg['windSpeeds'] = np.ones(d) * wind_speed
        probf['air_density'] = probg['air_density'] = air_density
        probf['windDirections'] = probg['windDirections'] = np.linspace(
            0, 360, d)
        probf['windFrequencies'] = probg['windFrequencies'] = np.ones(d) / d

        # run problem
        probf.run()
        probg.run()
        AEPf[index] = probf['AEP']
        AEPg[index] = probg['AEP']

        # pass results to self for use with unit test
        tic = time()
        # profile.start()
        J = probf.calc_gradient(['turbineX', 'turbineY'], ['AEP'],
                                return_format='dict',
                                mode='auto')
        # profile.stop()
        toc = time()
        time_ex_f[index] = toc - tic

        tic = time()
        # profile.start()
        J = probf.calc_gradient(['turbineX', 'turbineY'], ['AEP'],
                                return_format='dict',
                                mode='fd')
        # profile.stop()
        toc = time()
        time_fd_f[index] = toc - tic

        tic = time()
        # profile.start()
        J = probg.calc_gradient(['turbineX', 'turbineY'], ['AEP'],
                                return_format='dict',
                                mode='auto')
        # profile.stop()
        toc = time()
        time_ex_g[index] = toc - tic

        tic = time()
        # profile.start()
        J = probg.calc_gradient(['turbineX', 'turbineY'], ['AEP'],
                                return_format='dict',
                                mode='fd')
        # profile.stop()
        toc = time()
        time_fd_g[index] = toc - tic

        index += 1

    if savetxt:
        np.savetxt(
            'scaling_by_directions_combined_%i_turbines_%i_directions.txt' %
            (nTurbines, maxDirections),
            np.array([
                time_ex_f, time_ex_g, time_fd_f, time_fd_g, AEPf, AEPg,
                directions
            ]))

    return np.array(
        [time_ex_f, time_ex_g, time_fd_f, time_fd_g, AEPf, AEPg, directions])
        rotorDiameter[turbI] = rotor_diameter  # m
        axialInduction[turbI] = 1.0 / 3.0
        Ct[turbI] = 4.0 * axialInduction[turbI] * (1.0 - axialInduction[turbI])
        Cp[turbI] = 0.7737 / 0.944 * 4.0 * 1.0 / 3.0 * np.power(
            (1 - 1.0 / 3.0), 2)
        generatorEfficiency[turbI] = 0.944
        yaw[turbI] = 0.  # deg.

    # Define flow properties
    air_density = 1.1716  # kg/m^3

    # initialize problem
    prob = Problem(impl=impl,
                   root=OptAEP(nTurbines=nTurbines,
                               nDirections=nDirections,
                               minSpacing=minSpacing,
                               differentiable=True,
                               use_rotor_components=False,
                               nVertices=nVertices))

    # set up optimizer
    prob.driver = pyOptSparseDriver()
    prob.driver.options['optimizer'] = 'SNOPT'
    prob.driver.add_objective('obj', scaler=1E-5)

    # set optimizer options
    # prob.driver.opt_settings['Verify level'] = 3
    prob.driver.opt_settings[
        'Print file'] = 'SNOPT_print_exampleOptAEP_amalia.out'
    prob.driver.opt_settings[
        'Summary file'] = 'SNOPT_summary_exampleOptAEP_amalia.out'
    prob.driver.opt_settings['Major iterations limit'] = 1000
Exemplo n.º 5
0
    axialInduction = np.array([axialInduction, axialInduction])
    rotorDiameter = np.array([rotorDiameter, rotorDiameter])
    generatorEfficiency = np.array([generator_efficiency, generator_efficiency])
    yaw = np.array([0., 0.])

    # Define site measurements
    wind_direction = 270.-0.523599*180./np.pi
    wind_speed = 8.    # m/s
    air_density = 1.1716

    Ct = np.array([CT, CT])
    Cp = np.array([CP, CP])

    global prob
    prob = Problem(root=OptAEP(nTurbines=nTurbines, nDirections=nDirections, use_rotor_components=False,
                               wake_model=gauss_wrapper, wake_model_options={'nSamples': 0}, datasize=0,
                               params_IdepVar_func=add_gauss_params_IndepVarComps,
                               params_IndepVar_args={}))

    prob.setup()
    prob['model_params:integrate'] = False
    prob['model_params:spread_mode'] = 'bastankhah'
    prob['model_params:yaw_mode'] = 'bastankhah'
    prob['model_params:n_std_dev'] = 4.
    # prob['model_params:m'] = 0.33
    # prob['model_params:Dw0'] = 1.3

    tuning_obj_function(plot=True)

    # initialize optimization problem
    optProb = Optimization('Tuning Gaussian Model to SOWFA', tuning_obj_function)
    optProb.addVarGroup('ke', 1, lower=0.0, upper=1.0, value=0.152, scalar=1)
        yaw[turbI] = 0.  # deg.

    # Define flow properties
    wind_speed = 8.0  # m/s
    air_density = 1.1716  # kg/m^3
    windDirections = np.linspace(0, 270, size)
    windSpeeds = np.ones(size) * wind_speed
    windFrequencies = np.ones(size) / size

    # initialize problem
    prob = Problem(impl=impl,
                   root=OptAEP(
                       nTurbines=nTurbs,
                       nDirections=windDirections.size,
                       nVertices=nVertices,
                       minSpacing=minSpacing,
                       differentiable=True,
                       use_rotor_components=False,
                       wake_model=gauss_wrapper,
                       params_IdepVar_func=add_gauss_params_IndepVarComps,
                       params_IndepVar_args={}))

    # prob.root.deriv_options['type'] = 'fd'
    # prob.root.deriv_options['form'] = 'central'
    # prob.root.deriv_options['step_size'] = 1.0e-8

    # set up optimizer
    prob.driver = pyOptSparseDriver()
    prob.driver.options['optimizer'] = 'SNOPT'
    prob.driver.add_objective('obj', scaler=1E0)
    # prob.driver.options['gradient method'] = 'snopt_fd'
Exemplo n.º 7
0
    samplesX = np.linspace(0, 3000, res)
    samplesY = np.linspace(0, 3000, res)

    samplesX, samplesY = np.meshgrid(samplesX, samplesY)
    samplesX = samplesX.flatten()
    samplesY = samplesY.flatten()
    samplesZ = np.ones(samplesX.shape) * hub_height

    # initialize problems
    gauss_prob = Problem(
        root=OptAEP(nTurbines=nTurbines,
                    nDirections=nDirections,
                    use_rotor_components=False,
                    wake_model=gauss_wrapper,
                    wake_model_options={'nSamples': res**2},
                    datasize=0,
                    params_IdepVar_func=add_gauss_params_IndepVarComps,
                    force_fd=True,
                    params_IndepVar_args={}))

    wake_model_options = {
        'differentiable': True,
        'use_rotor_components': False,
        'nSamples': res**2,
        'verbose': False
    }
    floris_prob = Problem(
        root=OptAEP(nTurbines=nTurbines,
                    nDirections=nDirections,
                    use_rotor_components=False,
            (1 - 1.0 / 3.0), 2)
        generatorEfficiency[turbI] = 0.944
        yaw[turbI] = 0.  # deg.

    # Define flow properties
    wind_speed = 8.0  # m/s
    air_density = 1.1716  # kg/m^3
    windDirections = np.linspace(0, 270, size)
    windSpeeds = np.ones(size) * wind_speed
    windFrequencies = np.ones(size) / size

    # initialize problem
    prob = Problem(impl=impl,
                   root=OptAEP(nTurbines=nTurbs,
                               nDirections=windDirections.size,
                               minSpacing=minSpacing,
                               differentiable=True,
                               use_rotor_components=False))

    # set up optimizer
    prob.driver = pyOptSparseDriver()
    prob.driver.options['optimizer'] = 'SNOPT'
    prob.driver.add_objective('obj', scaler=1E-5)

    # set optimizer options
    prob.driver.opt_settings['Verify level'] = 3
    prob.driver.opt_settings['Print file'] = 'SNOPT_print_exampleOptAEP.out'
    prob.driver.opt_settings[
        'Summary file'] = 'SNOPT_summary_exampleOptAEP.out'
    prob.driver.opt_settings['Major iterations limit'] = 1000
Exemplo n.º 9
0
        Cp[turbI] = 0.7737 / 0.944 * 4.0 * 1.0 / 3.0 * np.power(
            (1 - 1.0 / 3.0), 2)
        generatorEfficiency[turbI] = 0.944
        yaw[turbI] = 0.  # deg.

    # Define flow properties
    wind_speed = 8.0  # m/s
    air_density = 1.1716  # kg/m^3
    windDirections = np.linspace(0, 270, nDirections)
    windFrequencies = np.ones_like(windDirections) * 1.0 / nDirections

    # initialize problem
    prob = Problem(impl=impl,
                   root=OptAEP(nTurbines=nTurbs,
                               nDirections=windDirections.size,
                               minSpacing=minSpacing,
                               use_rotor_components=use_rotor_components,
                               datasize=datasize))

    # set up optimizer
    prob.driver = pyOptSparseDriver()
    prob.driver.options['optimizer'] = 'SNOPT'
    prob.driver.add_objective('obj', scaler=1E-8)

    # set optimizer options
    prob.driver.opt_settings['Verify level'] = 0
    prob.driver.opt_settings[
        'Print file'] = 'SNOPT_print_exampleOptAEP-Rotor.out'
    prob.driver.opt_settings[
        'Summary file'] = 'SNOPT_summary_exampleOptAEP-Rotor.out'
    prob.driver.opt_settings['Major iterations limit'] = 1000
Exemplo n.º 10
0
        # 1:TI by Niayifar and Porte Agel altered by Annoni and Thomas,
        # 2:TI by Niayifar and Porte Agel 2016,
        # 3:no yet implemented]
        calc_k_star = False
        z_ref = 90.0
        z_0 = 0.0
        TI = 0.06
        # k_calc = 0.022
        k_calc = 0.3837 * TI + 0.003678
        nRotorPoints = 16

        prob = Problem(
            root=OptAEP(nTurbines=nTurbines,
                        nDirections=nDirections,
                        use_rotor_components=False,
                        wake_model=gauss_wrapper,
                        wake_model_options={'nSamples': 0},
                        datasize=0,
                        params_IdepVar_func=add_gauss_params_IndepVarComps,
                        params_IndepVar_args={}))

        prob.setup()

        prob['model_params:wake_combination_method'] = wake_combination_method
        prob['model_params:ti_calculation_method'] = ti_calculation_method
        prob['model_params:calc_k_star'] = calc_k_star
        prob['model_params:sort'] = sort_turbs
        prob['model_params:z_ref'] = z_ref
        prob['model_params:z_0'] = z_0
        prob['model_params:ky'] = k_calc
        prob['model_params:kz'] = k_calc
        prob['model_params:I'] = TI