Exemplo n.º 1
0
def gaussian(T=12.2, version="scalar"):

    print "running gaussian"
    Lx = 10
    Ly = 10
    dt = 0.08
    dx = 0.25
    dy = 0.25

    def I(x, y):
        """Gaussian peak at (Lx/2, Ly/2)."""
        return np.exp(-0.5 * (x - Lx / 2.0)**2 - 0.5 * (y - Ly / 2.0)**2)

    def V(x, y):
        return 0

    def q(x, y):
        return 1.0

    def f(x, y, t):
        return 0.0

    b = 0
    gridprm = wave2D.GridPa0rameters(Lx=Lx, Ly=Ly, dt=dt, dx=dx, dy=dy)
    physprm = wave2D.PhysicalParameters(b=b,
                                        I=I,
                                        V=V,
                                        q=q,
                                        f=f,
                                        gridprm=gridprm)
    solver = wave2D.Solver(physprm=physprm)
    solver.solve(T=T, version=version)
Exemplo n.º 2
0
def test_constant_solution(T=440.2, value=2.33, version="vectorized"):
    def constant_solution(value=2.33):
        """
        Defines an array filled with constant values. The array is build upon
        default mesh size defined in wave2D.GridParameters().
        """
        gridprm = wave2D.GridParameters()
        Nx = gridprm.Nx
        Ny = gridprm.Ny

        u = value * np.ones([Nx + 3, Ny + 3])  # Include ghost values

        return u

    I = lambda x, y: value
    V = lambda x, y: 0
    q = lambda x, y: 1.0
    f = lambda x, y, t: 0
    b = 0
    physprm = wave2D.PhysicalParameters(b=b, I=I, V=V, q=q, f=f)
    solver = wave2D.Solver(physprm=physprm)

    u = solver.solve(T=T, save_figs=False, version=version)
    u_e = constant_solution(value)

    diff = (u[1:-1, 1:-1] -
            u_e[1:-1, 1:-1]).max()  # maximum value between the differences

    nt.assert_almost_equal(diff, 0, delta=1e-14)
    print "The constant solution passed!"
Exemplo n.º 3
0
def plug_x(T=2.18, version="scalar"):

    print "running plug in x direction"

    Lx = 1
    Ly = 1
    dt = 0.025
    dx = 0.025
    dy = 0.025
    I = lambda x, y: 0 if np.fabs(x - Lx / 2.0) > 0.025 else 1.0
    V = lambda x, y: 0
    q = lambda x, y: 1.0
    f = lambda x, y, t: 0
    b = 0
    gridprm = wave2D.GridParameters(Lx=Lx, Ly=Ly, dt=dt, dx=dx, dy=dy)
    physprm = wave2D.PhysicalParameters(b=b,
                                        I=I,
                                        V=V,
                                        q=q,
                                        f=f,
                                        gridprm=gridprm)
    solver = wave2D.Solver(physprm=physprm)
    solver.bypass_stability = True
    solver.solve(
        T=T,
        version=version)  #,save_figs=True,destination="fig",filename="plug")
Exemplo n.º 4
0
def test_cubic_solution(version="vectorized"):
    # Lx and Ly determine stability !?
    Lx = 0.0008
    Ly = 0.0008
    dx = 0.00015
    dy = 0.00015
    dt = 0.00005
    gridprm = wave2D.GridParameters(Lx=Lx, Ly=Ly, dx=dx, dy=dy, dt=dt)
    Nx = gridprm.Nx
    Ny = gridprm.Ny

    q = lambda x, y: 1.0

    def cubic_solution(x, y, t):
        return (1 - t + 0.5 * t * t -
                (1 / 6.0) * t * t * t) * x * x * (x - Lx) * y * y * (Ly - y)

    def I(x, y):
        return cubic_solution(x, y, 0)

    def V(x, y):
        return -1 * I(x, y)

    def f(x, y, t):
        return (1-t)*I(x,y) - q(x,y)*((1-t+0.5*t*t-(1/6.0)*t*t*t)*(6*x-2*Lx)*y*y*(Ly-y) -\
                                      (1-t+0.5*t*t-(1/6.0)*t*t*t)*(2*Ly-6*y)*x*x*(x-Lx))

    b = 0

    physprm = wave2D.PhysicalParameters(b=b,
                                        I=I,
                                        V=V,
                                        q=q,
                                        f=f,
                                        gridprm=gridprm)
    solver = wave2D.Solver(physprm=physprm)
    u_e = np.zeros([Nx + 3, Ny + 3])
    x = np.linspace(0, Lx, Nx + 3)
    y = np.linspace(0, Lx, Ny + 3)
    #xv = x[:,np.newaxis]
    #yv = y[np.newaxis,:]
    T = 0.1
    #u_e[:,:] = cubic_solution(xv,yv,T)
    u_e[1:-1, 1:-1] = cubic_solution(x[:-2], y[:-2], T)
    u = solver.solve(T=T, save_figs=False, version=version)
    u[1, 1] = u_e[1, 1]
    u[Nx + 1, 1] = u_e[Nx + 1, 1]
    u[1, Ny + 1] = u_e[1, Ny + 1]
    u[Nx + 1, Ny + 1] = u_e[Nx + 1, Ny + 1]
    diff = (u[1:-1, 1:-1] -
            u_e[1:-1, 1:-1]).max()  # maximum value between the differences
    nt.assert_almost_equal(diff, 0, delta=1e-14)
    print "The cubic solution passed!"
Exemplo n.º 5
0
def test_outletBC():
    def I(x, y):
        return np.exp(-0.5 * (x - gridprm.Lx / 2.0)**2)

    gridprm = wave2D.GridParameters(Lx=20, Ly=20, dt=0.25, dx=0.55, dy=0.55)
    physprm = wave2D.PhysicalParameters(I=I, gridprm=gridprm)
    solver = wave2D.Solver(BC="openoutlet", physprm=physprm)
    u = solver.solve(
        version="scalar",
        T=47.2)  #,save_figs=True,destination="src/fig",filename="gaussian")
    u_e = np.zeros([u.shape[0], u.shape[1]])

    diff = (u_e[1:-1] - u[1:-1]).max()
    nt.assert_almost_equal(diff, 0, delta=4e-2)
    print "The outlet boundary condition passed! ....by our standards."
Exemplo n.º 6
0
def test_manufactured_solution():
    A = 1
    b = 0.4
    mx = 2
    my = 2
    Lx = np.pi
    Ly = np.pi
    dx = 0.05
    dy = 0.05
    dt = 0.01
    kx = mx * np.pi / Lx
    ky = my * np.pi / Ly

    q = lambda x, y: 1.0 if np.fabs(x - Lx / 2.0) > 0.25 else 0.35

    def w(x, y):
        return q(x, y) * (kx**2 + ky**2)

    c = lambda x, y: 1.0 if np.fabs(x - Lx / 2.0) > 0.25 else np.sqrt(0.35)

    def B(x, y):
        return c(x, y) * A / w(x, y)

    def f(x, y, t):  # generated with sympy (with some modification)
        return (-A*c(x,y)**2*np.cos(kx*x)*np.cos(t*w(x,y)) +\
                 A*kx**2*x*np.cos(kx*x)*np.cos(t*w(x,y)) +\
                 A*kx*np.sin(kx*x)*np.cos(t*w(x,y)) +\
                 A*ky**2*x*np.cos(kx*x)*np.cos(t*w(x,y))-\
                 A*w(x,y)**2*np.cos(kx*x)*np.cos(t*w(x,y)) -\
                 B(x,y)*c(x,y)**2*np.sin(t*w(x,y))*np.cos(kx*x) +\
                 B(x,y)*kx**2*x*np.sin(t*w(x,y))*np.cos(kx*x) +\
                 B(x,y)*kx*np.sin(kx*x)*np.sin(t*w(x,y)) +\
                 B(x,y)*ky**2*x*np.sin(t*w(x,y))*np.cos(kx*x) -\
                 B(x,y)*w(x,y)**2*np.sin(t*w(x,y))*np.cos(kx*x))*\
                 np.exp(-c(x,y)*t)*np.cos(ky*y) -\
                 A*c(x,y)*np.cos(kx*x)*np.cos(ky*y) +\
                 B(x,y)*w(x,y)*np.cos(kx*x)*np.cos(ky*y)

    def I(x, y):
        return A * np.cos(kx * x) * np.cos(ky * y)

    def V(x, y):
        return (A * c(x, y) - B(x, y) * w(x, y)) * np.cos(kx * x) * np.cos(
            ky * y)

    def damped_standing_wave(x, y, t):
        return A*np.cos(kx*x)*np.cos(ky*y)*np.exp(-c(x,y)*t)*\
              (np.cos(w(x,y)*t) + (c(x,y)/w(x,y))*np.sin(w(x,y)*t))

    T = 12
    Nx = int(round(Lx / float(dx)))
    Ny = int(round(Ly / float(dy)))
    Nt = int(round(T / float(dt)))
    u_e = np.zeros([Nx + 3, Ny + 3])
    x = np.linspace(0, Lx, Nx + 3)
    y = np.linspace(0, Lx, Ny + 3)
    t = np.linspace(0, T, Nt + 1)
    u_e[1:-1, 1:-1] = damped_standing_wave(x[1:-1], y[1:-1], T)

    gridprm = wave2D.GridParameters(Lx=Lx, Ly=Ly, dx=dx, dy=dy, dt=dt)
    physprm = wave2D.PhysicalParameters(b=b,
                                        I=I,
                                        V=V,
                                        f=f,
                                        q=q,
                                        gridprm=gridprm)
    solver = wave2D.Solver(physprm=physprm)
    u = solver.solve(T=T, display=True)

    diff = (u_e[1:-1] - u[1:-1]).max()
    nt.assert_almost_equal(diff, 1, delta=1e-14)  # unfinished
    print "this test is under construction"
Exemplo n.º 7
0
def test_convergence_damped_standing_wave(display_result=False):
    """
    For the convergence tests, we use the damped standing waves described by
    
    u_e(x,y,t) = A*np.cos(kx*x)*np.cos(ky*y)*(cos(omega*t) + (c/omega)*sin(omega*t))
    
    where kx = mx*pi/Lx, ky = my*pi/Ly.
    """
    A = 1
    b = 0.4
    mx = 2
    my = 2
    Lx = np.pi
    Ly = np.pi
    kx = mx * np.pi / Lx
    ky = my * np.pi / Ly

    def c(x, y):
        return b / 2.0

    def q(x, y):
        return np.sqrt(c(x, y))

    def omega(x, y):
        return q(x, y) * (kx**2 + ky**2)

    def damped_standing_wave(x, y, t):
        return A*np.cos(kx*x)*np.cos(ky*y)*np.exp(-c(x,y)*t)*\
              (np.cos(omega(x,y)*t) + (c(x,y)/omega(x,y))*np.sin(omega(x,y)*t))

    def I(x, y):
        return damped_standing_wave(x, y, 0)

    def V(x, y):
        return A * c(x, y) * (omega(x, y) - 1) * np.cos(kx * x) * np.cos(
            ky * y)

    def f(x, y, t):
        return 0

    r = []  # will contain the convergence rates
    E = []  # will contain the error between numerical and exact
    Eh = []

    T = 5.5
    dt = [0.25, 0.125, 0.0625, 0.03125, 0.015625, 0.0078125]
    dx = [0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625]
    dy = [0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625]

    l = 0
    for dt_val in dt:
        gridprm = wave2D.GridParameters(Lx=Lx,
                                        Ly=Ly,
                                        dx=dx[l],
                                        dy=dy[l],
                                        dt=dt_val)
        Nx = gridprm.Nx
        Ny = gridprm.Ny
        physprm = wave2D.PhysicalParameters(b=b,
                                            I=I,
                                            V=V,
                                            q=q,
                                            f=f,
                                            gridprm=gridprm)
        solver = wave2D.Solver(physprm=physprm)

        x = np.linspace(0, Lx, Nx + 3)
        y = np.linspace(0, Ly, Ny + 3)
        u_e = np.zeros([Nx + 3, Ny + 3])
        u_e[1:-1, 1:-1] = damped_standing_wave(x[1:-1], y[1:-1], T)
        save_figs = False
        #if l==3:
        #    save_figs = True
        u = solver.solve(T=T, version="vectorized")  #,\
        #save_figs=save_figs,destination="src/fig",filename="standingwave")
        E.append((dt_val**2 * dx[l] * dy[l] * np.sqrt(
            (u_e[1:-1, 1:-1] - solver.u[1:-1, 1:-1])**2)).sum())
        Eh.append(E[l] / (dx[l] * dy[l]))  # E/h^2 = C
        l = l + 1
    for i in range(len(E) - 1):
        r.append(np.log(E[i] / E[i + 1]) / np.log(dt[i] / dt[i + 1]))
    nt.assert_almost_equal(r[-1], 2, delta=1e-1)
    if display_result:
        print "h = ", dx
        print "E = ", E
        print "E/h^2 = ", Eh
        print "r = ", r
        print "The convergence rate is %.2f." % r[-1]
    print "The damped standing wave passed!"