Exemplo n.º 1
0
def generate_diffs(filea, fileb):
    wavea = read_wave_file(filea, True)
    waveb = read_wave_file(fileb, True)

    diffl = normalized_difference(*aligned_sublists(wavea[0], waveb[0]))
    diffr = normalized_difference(*aligned_sublists(wavea[1], waveb[1]))

    peakl = peak_diff(wavea[0], waveb[0])
    peakr = peak_diff(wavea[1], waveb[1])

    # for line in aligned_sublists(wavea[0], waveb[0]):
    #     plt.plot(normalized(line[:10000]))
    # plt.show()

    # louder_a = wavea[0] if numpy.amax(wavea[0]) \
    #   > numpy.amax(wavea[1]) else wavea[1]
    # louder_b = waveb[0] if numpy.amax(waveb[0]) \
    #   > numpy.amax(waveb[1]) else waveb[1]

    # freqd = freq_diff(normalized(louder_a), normalized(louder_b))

    return (
        diffl,
        diffr,
        peakl,
        peakr,
        0,  # freqd,
        os.path.split(filea)[-1],
        os.path.split(fileb)[-1])
Exemplo n.º 2
0
def concat_samples(regions, path, name=None):
    if name is None:
        output_filename = 'all_samples_%f.flac' % time.time()
    else:
        output_filename = '%s.flac' % name

    concat_filename = 'concat.txt'

    with open(concat_filename, 'w') as outfile:
        global_offset = 0
        for region in regions:
            sample = region.attributes['sample']

            sample_data = read_wave_file(full_path(path, sample))

            sample_length = len(sample_data[0])
            region.attributes['offset'] = global_offset
            region.attributes['end'] = (global_offset + sample_length -
                                        ANTI_CLICK_OFFSET)
            # TODO: make sure endpoint is a zero crossing to prevent clicks
            region.attributes['sample'] = output_filename
            outfile.write("file '%s'\n" % full_path(path, sample))
            global_offset += sample_length

    create_flac(concat_filename, full_path(path, output_filename))
    os.unlink(concat_filename)

    return regions
Exemplo n.º 3
0
def normalize_file(filename):
    data = read_wave_file(filename, True)
    if len(data):
        normalized_data = normalized(data) * (2**(bit_depth - 1) - 1)
    else:
        normalized_data = data
    save_to_file(filename, 2, normalized_data)
Exemplo n.º 4
0
def process_all(start, stop, *files):
    start = int(start)
    stop = int(stop)
    chunk_offset = ((-1 * start) % CHUNK_SIZE)
    for file in files:
        stereo = read_wave_file(file)
        left = stereo[0]
        right = stereo[1]
        plt.plot(left[start:stop])
        plt.plot(right[start:stop])
    plt.show()
Exemplo n.º 5
0
def level_volume(regions, dirname):
    if len(regions) == 0:
        return None

    velcurve = {}

    velsorted = list(
        reversed(sorted(regions, key=lambda x: int(x.attributes['hivel']))))
    for high, low in pairwise(velsorted):
        try:
            diff = (peak_rms(
                read_wave_file(full_path(dirname, low.attributes['sample']))) /
                    peak_rms(
                        read_wave_file(
                            full_path(dirname, high.attributes['sample']))))
        except ZeroDivisionError:
            print "Got ZeroDivisionError with high sample path: %s" % \
                high.attributes['sample']
            raise
        for attr in REMOVE_ATTRS:
            if attr in high.attributes:
                del high.attributes[attr]
        velcurve.update({
            ('amp_velcurve_%d' % int(high.attributes['hivel'])):
            1,
            ('amp_velcurve_%d' % (int(high.attributes['lovel']) + 1)):
            diff,
        })
    # print the last region that didn't have a lower counterpart
    low = velsorted[-1]
    for attr in REMOVE_ATTRS:
        if attr in low.attributes:
            del low.attributes[attr]
    velcurve.update({
        ('amp_velcurve_%d' % int(low.attributes['hivel'])):
        1,
        ('amp_velcurve_%d' % (int(low.attributes['lovel']) + 1)):
        0,
    })
    return Group(velcurve, velsorted)
Exemplo n.º 6
0
def freq_shift():
    files = ['A1_v111_15.00s.aif', 'A1_v95_15.00s.aif']
    wavea, waveb = [
        read_wave_file(os.path.join(root_dir, file)) for file in files
    ]

    louder_a = wavea[0] if (
        numpy.amax(wavea[0]) > numpy.amax(wavea[1])) else wavea[1]
    louder_b = waveb[0] if (
        numpy.amax(waveb[0]) > numpy.amax(waveb[1])) else waveb[1]

    freqd = freq_diff(normalized(louder_a), normalized(louder_b))

    waveb_shifted = [shift_freq(channel, freqd) for channel in waveb]
    louder_shifted_b = waveb_shifted[0] if (numpy.amax(waveb_shifted[0]) >
                                            numpy.amax(waveb_shifted[1])) \
        else waveb_shifted[1]

    shifted_freqd = freq_diff(normalized(louder_a),
                              normalized(louder_shifted_b))

    # lefts_aligned = aligned_sublists(wavea[0], waveb[0])
    rights_aligned = aligned_sublists(wavea[1], waveb[1])
    # shifted_lefts_aligned = aligned_sublists(wavea[0], waveb_shifted[0])

    diffl = normalized_difference(*aligned_sublists(wavea[0], waveb[0]))
    diffr = normalized_difference(*aligned_sublists(wavea[1], waveb[1]))

    plt.plot(normalized(rights_aligned[0][:10000]))
    plt.plot(normalized(rights_aligned[1][:10000]))
    plt.plot(
        numpy.absolute(
            normalized(rights_aligned[0][:10000]) -
            normalized(rights_aligned[1][:10000])))
    plt.show()

    shifted_diffl = normalized_difference(
        *aligned_sublists(wavea[0], waveb_shifted[0]))
    shifted_diffr = normalized_difference(
        *aligned_sublists(wavea[1], waveb_shifted[1]))

    print files
    print 'diffs\t\t', diffl, diffr
    print 'shifted diffs\t', shifted_diffl, shifted_diffr
    print 'freqs', freqd
    print 'shifted freqs', shifted_freqd
Exemplo n.º 7
0
def graph_ffts():
    files = ['A1_v111_15.00s.aif', 'A2_v31_15.00s.aif']
    for file in files:
        stereo = read_wave_file(os.path.join(root_dir, file))
        left = stereo[0]
        right = stereo[1]
        list = left[:100000]

        w = numpy.fft.rfft(list)
        freqs = numpy.fft.fftfreq(len(w))

        # Find the peak in the coefficients
        # idx = numpy.argmax(numpy.abs(w[:len(w) / 2]))
        idx = numpy.argmax(numpy.abs(w))
        freq = freqs[idx]
        plt.plot(w)
        print freq
        print \
            fundamental_frequency(normalized(list)), \
            fundamental_frequency(normalized(left + right))
Exemplo n.º 8
0
def starts_with_click(filename, threshold_samples=default_threshold_samples):
    sample_data = read_wave_file(filename)
    return (abs(sample_data[0][0]) > threshold_samples
            or abs(sample_data[0][1]) > threshold_samples)
Exemplo n.º 9
0
def max_amp(filename):
    return numpy.amax(read_wave_file(filename)) / (2.**(bit_depth - 1))
Exemplo n.º 10
0
def chop(aif):
    file = read_wave_file(aif)
    start, end = min([start_of(chan) for chan in file]), \
        max([end_of(chan) for chan in file])
    print aif, start, end, float(end) / len(file[0])
Exemplo n.º 11
0
        interpolation="none"
    )
    plt.colorbar()

    plt.xlabel("time (s)")
    plt.ylabel("frequency (hz)")
    plt.xlim([0, timebins - 1])
    plt.ylim([0, freqbins])

    xlocs = np.float32(np.linspace(0, timebins - 1, 5))
    plt.xticks(xlocs, [
        "%.02f" % l
        for l in (
            ((xlocs * len(samples) / timebins) + (0.5 * binsize)) / samplerate
        )
    ])
    ylocs = np.int16(np.round(np.linspace(0, freqbins - 1, 10)))
    plt.yticks(ylocs, ["%.02f" % freq[i] for i in ylocs])

    if plotpath:
        plt.savefig(plotpath, bbox_inches="tight")
    else:
        plt.show()

    plt.clf()

if __name__ == "__main__":
    stereo = read_wave_file(sys.argv[1])
    left = stereo[0]
    plotstft(48000, left)