Exemplo n.º 1
0
def make_frost_reference_time_period(sdate,edate):
    sdate = parse_date(sdate)
    edate = parse_date(edate)
    formatstr = '%Y-%m-%dT%H:%M:00.000Z'
    refstr = '{}/{}'.format(sdate.strftime(formatstr),
                            edate.strftime(formatstr))
    return refstr
Exemplo n.º 2
0
 def quicklook(self,m=True,projection=None,date=None,**kwargs):
     if m is True:
         import cartopy.crs as ccrs
         import cmocean
         import matplotlib.pyplot as plt
         from mpl_toolkits.axes_grid1.inset_locator import inset_axes
         dt = parse_date(date)
         lons = self.vars['longitude']
         lats = self.vars['latitude']
         var = self.vars[self.stdvarname]
         fc_date = self.fc_date
         if date is not None:
             # find date in self.vars and give a snapshot
             idx = self.vars['datetime'].index(dt)
             var = self.vars[self.stdvarname][idx,:]
             fc_date = self.fc_date[idx]
         elif (date is None and len(var.shape)==3):
             # find date in self.vars and give a snapshot
             var = self.vars[self.stdvarname][0,:]
             fc_date = self.fc_date[0]
         if projection is None:
             projection = ccrs.PlateCarree()
         # parse kwargs
         cflevels = kwargs.get('cflevels',10)
         clevels = kwargs.get('clevels',10)
         if kwargs.get('cmap') is None:
             cmap = cmocean.cm.amp
         else:
             cmap = kwargs.get('cmap')
         lonmax,lonmin = np.max(lons),np.min(lons)
         latmax,latmin = np.max(lats),np.min(lats)
         fig = plt.figure()
         ax = fig.add_subplot(1, 1, 1, projection=projection)
         ax.set_extent(  [lonmin, lonmax,latmin, latmax],
                         crs = projection )
         cf = ax.contourf(lons,lats, var,
                         cmap=cmap,levels=cflevels,
                         transform=ccrs.PlateCarree())
         c = ax.contour(lons,lats, var,
                        cmap=cmap,levels=clevels,
                        transform=ccrs.PlateCarree())
         axins = inset_axes(ax,
                    width="5%",  # width = 5% of parent_bbox width
                    height="100%",  # height : 50%
                    loc='lower left',
                    bbox_to_anchor=(1.01, 0., 1, 1),
                    bbox_transform=ax.transAxes,
                    borderpad=0,
                    )
         fig.colorbar(cf, cax=axins, label=self.varalias
                                     + ' [' + self.units + ']')
         ax.coastlines()
         ax.gridlines()
         plt.subplots_adjust(bottom=0.1, right=0.8, top=0.9)
         ax.set_title(self.model + ' for ' + str(fc_date))
         plt.show()
Exemplo n.º 3
0
def get_frost_df_v1(r,nID,sensor,varalias):
    # base df
    df = pd.json_normalize(r.json()['data']['tseries'])
    # df to be concatenated initialized with time
    dfc = pd.json_normalize(r.json()
      ['data']['tseries'][0]['observations'])['time'].to_frame()
    stdvarname = variable_info[varalias]['standard_name']
    sensoridx = insitu_dict[nID]['sensor'][sensor]
    idx = df['header.extra.element.id']\
            [df['header.extra.element.id']==stdvarname]\
            .index.to_list()
    idxs = df['header.id.sensor']\
            [df['header.id.sensor']==sensoridx]\
            .index.to_list()
    dftmp = pd.json_normalize(r.json()\
                    ['data']['tseries'][idxs[sensoridx]]['observations'])\
                    ['body.data'].to_frame()
    dftmp = dftmp.rename(columns={ dftmp.columns[0]: stdvarname })
    dftmp[stdvarname] = dftmp[stdvarname].mask(dftmp[stdvarname] < 0, np.nan)
    dfc = pd.concat([dfc, dftmp.reindex(dfc.index)], axis=1)
    var = list(dfc[stdvarname].values)
    timedt = [parse_date(d) for d in dfc['time'].values]
    timedt = [dt.replace(tzinfo=None) for dt in timedt]
    time = netCDF4.date2num(timedt,variable_info['time']['units'])
    sensor = list(insitu_dict[nID]['sensor'].keys())[0]
    lons = [insitu_dict[nID]['coords'][sensor]['lon']]*len(var)
    lats = [insitu_dict[nID]['coords'][sensor]['lat']]*len(var)
    vardict = {
                stdvarname:var,
                'time':time,
                'datetime':timedt,
                'time_unit':variable_info['time']['units'],
                'longitude':lons,
                'latitude':lats
                }
    #return dfc
    return vardict
Exemplo n.º 4
0
    def __init__(self,
                 model='mwam4',
                 sdate=None,
                 edate=None,
                 date_incr=1,
                 fc_date=None,
                 leadtime=None,
                 varalias='Hs',
                 st_obj=None,
                 transform_lons=None):
        print('# ----- ')
        print(" ### Initializing model_class object ###")
        print(' ')
        # parse and translate date input
        sdate = parse_date(sdate)
        edate = parse_date(edate)
        fc_date = parse_date(fc_date)
        if st_obj is not None:
            sdate = st_obj.sdate
            edate = st_obj.edate
            varalias = st_obj.varalias
        if fc_date is not None:
            print("Requested time: ", str(fc_date))
        elif (edate is None and fc_date is None and sdate is not None):
            fc_date = sdate
            print("Requested time: ", str(fc_date))
        elif (sdate is None and edate is None and fc_date is None):
            now = datetime.now()
            fc_date = datetime(now.year, now.month, now.day, now.hour)
            print("Requested time: ", str(fc_date))
        elif (sdate is not None and edate is not None
              and date_incr is not None):
            fc_date = sdate
            print("Requested time frame: " + str(sdate) + " - " + str(edate))

        print(" ")
        print(" ## Read files ...")
        t0 = time.time()
        vardict, \
        fc_date, leadtime, \
        filestr, \
        filevarname = get_model(model=model,sdate=sdate,edate=edate,
                            date_incr=date_incr,fc_date=fc_date,
                            leadtime=leadtime,varalias=varalias,
                            st_obj=st_obj,transform_lons=transform_lons)
        stdname = variable_info[varalias]['standard_name']
        units = variable_info[varalias]['units']
        varname = filevarname
        # define class variables
        self.fc_date = fc_date
        self.sdate = sdate
        self.edate = edate
        self.leadtime = leadtime
        self.model = model
        self.varalias = varalias
        self.varname = varname
        self.stdvarname = stdname
        self.units = units
        self.vars = vardict
        self.filestr = filestr
        t1 = time.time()
        print(" ")
        print( '## Summary:')
        print("Time used for retrieving model data:", round(t1 - t0, 2),
              "seconds")
        print(" ")
        print(" ### model_class object initialized ###")
        print('# ----- ')
Exemplo n.º 5
0
def get_model(model=None,
              sdate=None,
              edate=None,
              date_incr=None,
              fc_date=None,
              leadtime=None,
              varalias=None,
              st_obj=None,
              transform_lons=None):
    """
    toplevel function to get model data
    """
    if st_obj is not None:
        sdate = st_obj.sdate
        edate = st_obj.edate
        varalias = st_obj.varalias
    if (sdate is not None
        and edate is not None
        and date_incr is not None):
        fc_date = make_fc_dates(sdate, edate, date_incr)
    filestr = make_model_filename_wrapper(model=model,
                                          fc_date=fc_date,
                                          leadtime=leadtime)
    if (isinstance(filestr, list) and st_obj is None):
        vardict, \
        filevarname = get_model_fc_mode(filestr=filestr[0],model=model,
                                    fc_date=fc_date[0],varalias=varalias)
        vardict[variable_info[varalias]['standard_name']]=\
                    [vardict[variable_info[varalias]['standard_name']]]
        vardict['time'] = [vardict['time']]
        vardict['datetime'] = [vardict['datetime']]
        vardict['leadtime'] = leadtime
        for i in tqdm(range(1, len(filestr))):
            tmpdict, \
            filevarname = get_model_fc_mode(\
                            filestr=filestr[i],model=model,
                            fc_date=fc_date[i],varalias=varalias)
            vardict[variable_info[varalias]['standard_name']].append(
                tmpdict[variable_info[varalias]['standard_name']])
            vardict['time'].append(tmpdict['time'])
            vardict['datetime'].append(tmpdict['datetime'])
        vardict[variable_info[varalias]['standard_name']]=\
            np.array(vardict[variable_info[varalias]['standard_name']])
    else:
        vardict, \
        filevarname = get_model_fc_mode(filestr=filestr,model=model,
                                    fc_date=fc_date,varalias=varalias)
        vardict['time'] = [vardict['time']]
        vardict['datetime'] = [vardict['datetime']]
        vardict['leadtime'] = leadtime
    # transform to datetime
    with NoStdStreams():
        tmpd = [parse_date(str(d)) for d in vardict['datetime']]
    vardict['datetime'] = tmpd
    del tmpd
    if transform_lons==180:
        # transform longitudes from -180 to 180
        vardict['longitude'] = ((vardict['longitude'] - 180) % 360) - 180
    elif transform_lons==360:
        print('not yet implemented !!')
    return vardict, fc_date, leadtime, filestr, filevarname
Exemplo n.º 6
0
 def __init__(self,
              mc_obj_in=None,
              obs_obj_in=None,
              poi=None,
              col_obj_in=None,
              model=None,
              distlim=None,
              leadtime=None,
              date_incr=1,
              varalias='Hs',
              twin=30):
     print('# ----- ')
     print(" ### Initializing collocation_class object ###")
     print(" ")
     # make clones to prevent overwriting
     mc_obj = deepcopy(mc_obj_in)
     obs_obj = deepcopy(obs_obj_in)
     col_obj = deepcopy(col_obj_in)
     self.varalias = varalias
     if mc_obj is not None:
         model = mc_obj.model
     self.model = model
     if isinstance(obs_obj, satellite_class):
         self.obsname = obs_obj.mission
         self.mission = obs_obj.mission
         self.obstype = "satellite_altimeter"
         self.stdvarname = obs_obj.stdvarname
         self.region = obs_obj.region
         self.sdate = obs_obj.sdate
         self.edate = obs_obj.edate
     if isinstance(obs_obj, insitu_class):
         obs_obj.twin = insitu_dict[obs_obj.nID].get('twin', None)
         self.obsname = obs_obj.nID + '_' + obs_obj.sensor
         self.obstype = 'insitu'
         self.nID = obs_obj.nID
         self.sensor = obs_obj.sensor
         self.stdvarname = obs_obj.stdvarname
         self.units = variable_info[self.varalias].get('units')
         self.sdate = obs_obj.sdate
         self.edate = obs_obj.edate
     if poi is not None:
         # poi is of type dict
         self.nID = poi['nID']
         self.obsname = poi['nID']
         self.obstype = 'POI'
         stdvarname = variable_info[varalias]['standard_name']
         self.stdvarname = stdvarname
         self.units = variable_info[varalias].get('units')
         self.sdate = parse_date(poi['time'][0])
         self.edate = parse_date(poi['time'][-1])
     # define class variables
     self.leadtime = leadtime
     if leadtime is None:
         self.leadtime = 'best'
         self.leadtimestr = 'best'
     elif isinstance(self.leadtime, str):
         self.leadtime = leadtime
         leadtimestr = leadtime
         self.leadtimestr = leadtime
     else:
         leadtimestr = "{:0>3d}".format(self.leadtime)
         self.leadtime = leadtime
         self.leadtimestr = leadtimestr
     # get vars dictionary
     print(" ")
     print(" ## Collocate ... ")
     #        for t in range(1):
     try:
         t0 = time.time()
         results_dict = collocate(mc_obj=mc_obj,
                                  obs_obj=obs_obj,
                                  col_obj=col_obj,
                                  poi=poi,
                                  model=model,
                                  distlim=distlim,
                                  leadtime=self.leadtime,
                                  date_incr=date_incr,
                                  varalias=self.varalias)
         self.vars = results_dict
         self.fc_date = results_dict['datetime']
         t1 = time.time()
         print(" ")
         print(" ## Summary:")
         print(len(self.vars['time']), " values collocated.")
         print("Time used for collocation:", round(t1 - t0, 2), "seconds")
         print(" ")
         print(" ### Collocation_class object initialized ###")
     except Exception as e:
         print(e)
         self.error = e
         print("! No collocation_class object initialized !")
     # add class variables
     print('# ----- ')
Exemplo n.º 7
0
def collocate_poi_ts(indict,model=None,distlim=None,\
    leadtime=None,date_incr=None,varalias=None,twin=None):
    """
    indict: mandatory - lons, lats, time, values
            optional - leadtime, distlim, date_incr
    """
    # get stdvarname
    stdvarname = variable_info[varalias]['standard_name']
    # datetime or str
    if isinstance(indict['time'][0], str):
        poi_dtimes = [parse_date(t) for t in indict['time']]
    elif isinstance(indict['time'][0], datetime):
        poi_dtimes = indict['time']
    else:
        print('no valid time/datetime format for poi')
        print('use either str or datetime')
    fc_date = make_fc_dates(poi_dtimes[0], poi_dtimes[-1], date_incr)
    # get coinciding date between fc_date and dates in obs_obj
    idx1 = collocate_times(unfiltered_t=poi_dtimes,
                           target_t=fc_date,
                           twin=twin)
    # find valid/coinciding fc_dates
    if len(idx1) > len(fc_date):
        print('Muliple assignments within given time window')
        print('--> only closest to time stamp is chosen')
        idx_closest = get_closest_date(\
                    list(np.array(poi_dtimes)[idx1]),\
                    fc_date)
        idx1 = list(np.array(idx1)[idx_closest])
    # adjust obs_obj according to valid dates
    for key in indict.keys():
        if (key != 'time_unit' and key != 'meta' and key != 'nID'):
            indict[key] = list(np.array(indict[key])[idx1])
    poi_dtimes = list(np.array(poi_dtimes)[idx1])
    del idx1
    # find valid dates for given leadtime and model
    fc_date = find_valid_fc_dates_for_model_and_leadtime(\
                                    fc_date,model,leadtime)
    # adjust fc_date according to obs date
    idx2 = collocate_times(unfiltered_t=fc_date,
                           target_t=poi_dtimes,
                           twin=twin)
    fc_date = list(np.array(fc_date)[idx2])
    del idx2
    # compute time based on time unit from variable definition
    time_unit = variable_info['time']['units']
    time = netCDF4.date2num(poi_dtimes, time_unit)
    # check if file exists and if it includes desired time and append
    model_vals = []
    model_lons = []
    model_lats = []
    obs_vals = []
    obs_lons = []
    obs_lats = []
    collocation_idx_x = []
    collocation_idx_y = []
    distance = []
    time_lst = []
    dtimes = []
    switch = 0
    for d in tqdm(range(len(fc_date))):
        #        for t in range(1):
        with NoStdStreams():
            check = False
            check = check_if_file_is_valid(fc_date[d], model, leadtime)
            if check == True:
                # retrieve model
                fname = make_model_filename_wrapper(model, fc_date[d],
                                                    leadtime)
                # get hold of variable names (done only once)
                if switch == 0:
                    meta = ncdumpMeta(fname)
                    lonsname = get_filevarname('lons', variable_info,
                                               model_dict[model], meta)
                    latsname = get_filevarname('lats', variable_info,
                                               model_dict[model], meta)
                    timename = get_filevarname('time', variable_info,
                                               model_dict[model], meta)
                    filevarname = get_filevarname(varalias, variable_info,
                                                  model_dict[model], meta)
                    mlons = xr.open_dataset(fname)[lonsname].values
                    # secure lons from -180 to 180
                    mlons = ((mlons - 180) % 360) - 180
                    mlats = xr.open_dataset(fname)[latsname].values
                    # ensure matching dimension
                    if len(mlons.shape) == 1:
                        Mlons, Mlats = np.meshgrid(mlons, mlats)
                    else:
                        Mlons, Mlats = mlons, mlats
                    switch = 1
                plon = [indict['longitude'][d]]
                plat = [indict['latitude'][d]]
                index_array_2d, distance_array, _ = \
                        collocation_fct(plon,plat,Mlons,Mlats)
                dst = xr.open_dataset(fname)[timename].values
                tidx = list(dst).index(np.datetime64(fc_date[d]))
                # impose distlim
                if distance_array[0] < distlim * 1000:
                    idx_x = index_array_2d[0][0]
                    idx_y = index_array_2d[1][0]
                    model_lons.append(Mlons[idx_x, idx_y])
                    model_lats.append(Mlats[idx_x, idx_y])
                    vals = xr.open_dataset(fname)[filevarname]\
                                        [tidx,idx_x,idx_y].values
                    model_vals.append(vals.item())
                    obs_vals.append(indict['obs'][d])
                    obs_lons.append(indict['longitude'][d])
                    obs_lats.append(indict['latitude'][d])
                    collocation_idx_x.append(idx_x)
                    collocation_idx_y.append(idx_y)
                    distance.append(distance_array[0])
                    time_lst.append(time[d])
                    dtimes.append(poi_dtimes[d])
    results_dict = {
        'valid_date': dtimes,
        'time': time_lst,
        'time_unit': time_unit,
        'datetime': dtimes,
        'distance': distance,
        'model_values': model_vals,
        'model_lons': model_lons,
        'model_lats': model_lats,
        'obs_values': obs_vals,
        'obs_lons': obs_lons,
        'obs_lats': obs_lats,
        'collocation_idx_x': collocation_idx_x,
        'collocation_idx_y': collocation_idx_y
    }
    return results_dict
Exemplo n.º 8
0
 def __init__(self,
              sdate=None,
              mission='s3a',
              product='cmems_L3_NRT',
              edate=None,
              twin=30,
              download=False,
              path_local=None,
              region='mwam4',
              nproc=1,
              varalias='Hs',
              api_url=None,
              filterData=False,
              poi=None,
              distlim=None,
              **kwargs):
     print('# ----- ')
     print(" ### Initializing satellite_class object ###")
     print(" ")
     # parse and translate date input
     sdate = parse_date(sdate)
     edate = parse_date(edate)
     # check settings
     if (sdate is None and edate is None and poi is not None):
         sdate = poi['datetime'][0]
         edate = poi['datetime'][-1]
     elif (edate is None and sdate is not None):
         print("Requested time: ", str(sdate))
         edate = sdate
     elif (edate is None and sdate is None):
         now = datetime.now()
         sdate = datetime(now.year, now.month, now.day, now.hour)
         edate = sdate
         print("Requested time: ", str(sdate))
     else:
         print("Requested time frame: " + str(sdate) + " - " + str(edate))
     stdname = variable_info[varalias].get('standard_name')
     units = variable_info[varalias].get('units')
     # define some class variables
     self.sdate = sdate
     self.edate = edate
     self.varalias = varalias
     self.units = units
     self.stdvarname = stdname
     self.twin = twin
     self.region = region
     self.mission = mission
     self.obstype = 'satellite_altimeter'
     self.product = product
     self.provider = satellite_dict[product].get('provider')
     self.processing_level = \
             satellite_dict[product].get('processing_level')
     print('Chosen time window is:', twin, 'min')
     # make satpaths
     if path_local is None:
         path_template = satellite_dict[product]\
                                       ['dst']\
                                       ['path_template']
         self.path_local = path_template
     else:
         self.path_local = path_local
     # retrieve files
     if download is False:
         print("No download initialized, checking local files")
     else:
         print("Downloading necessary files ...")
         get_remote_files(\
                         path_local=path_local,
                         sdate=sdate,edate=edate,
                         twin=twin,nproc=nproc,
                         product=product,
                         api_url=api_url,
                         mission=mission,
                         dict_for_sub=vars(self))
     print(" ")
     print(" ## Find files ...")
     t0 = time.time()
     pathlst, _ = get_local_files(sdate,
                                  edate,
                                  twin,
                                  product,
                                  vars(self),
                                  path_local=path_local)
     print(" ")
     print(" ## Read files ...")
     if len(pathlst) > 0:
         #            for i in range(1):
         try:
             if filterData == True:
                 # extend time period due to filter
                 if 'stwin' not in kwargs.keys():
                     kwargs['stwin'] = 1  # needs to be changed
                 if 'etwin' not in kwargs.keys():
                     kwargs['etwin'] = 1
                 twin_tmp = twin + kwargs['stwin'] + kwargs['etwin']
                 # retrieve data
                 rvardict = get_sat_ts(sdate, edate, twin_tmp, region,
                                       product, pathlst, varalias, poi,
                                       distlim)
                 # filter data
                 rvardict = filter_main(rvardict,
                                        varalias=varalias,
                                        **kwargs)
                 # crop to original time period
                 sdate_tmp = sdate - timedelta(minutes=twin)
                 edate_tmp = sdate + timedelta(minutes=twin)
                 rvardict = crop_vardict_to_period(rvardict, sdate_tmp,
                                                   edate_tmp)
                 self.filter = True
                 self.filterSpecs = kwargs
             else:
                 rvardict = get_sat_ts(sdate, edate, twin, region, product,
                                       pathlst, varalias, poi, distlim)
                 # make ts in vardict unique
                 rvardict = vardict_unique(rvardict)
                 # rm NaNs
                 rvardict = rm_nan_from_vardict(varalias, rvardict)
             # find variable name as defined in file
             if (product == 'cmems_L3_NRT' or product == 'cmems_L3_MY'
                     or product == 'cmems_L3_s6a'):
                 ncdict = ncdumpMeta(pathlst[0])
             elif (product == 'cci_L2P' or product == 'cci_L3'):
                 ncdict = ncdumpMeta(pathlst[0])
             elif product == 'eumetsat_L2':
                 tmpdir = tempfile.TemporaryDirectory()
                 zipped = zipfile.ZipFile(pathlst[0])
                 enhanced_measurement = zipped.namelist()[-1]
                 extracted = zipped.extract(enhanced_measurement,
                                            path=tmpdir.name)
                 ncdict = ncdumpMeta(extracted)
                 tmpdir.cleanup()
             with NoStdStreams():
                 filevarname = get_filevarname(varalias, variable_info,
                                               satellite_dict[product],
                                               ncdict)
             rvardict['meta'] = ncdict
             # define more class variables
             self.vars = rvardict
             self.varname = filevarname
             t1 = time.time()
             print(" ")
             print('## Summary:')
             print(str(len(self.vars['time'])) + " footprints retrieved.")
             print("Time used for retrieving satellite data:",\
                     round(t1-t0,2),"seconds")
             print(" ")
             print("### Satellite object initialized ###")
             print('# ----- ')
         except Exception as e:
             print(e)
             print('Error encountered')
             print('No satellite_class object initialized')
     else:
         print('No satellite data found')
         print('No satellite_class object initialized')
         print('# ----- ')
Exemplo n.º 9
0
    def __init__(self,nID,sensor,sdate,edate,varalias='Hs',
    filterData=False,**kwargs):
        # parse and translate date input
        sdate = parse_date(sdate)
        edate = parse_date(edate)
        print('# ----- ')
        print(" ### Initializing insitu_class object ###")
        print(" ")
        print ('Chosen period: ' + str(sdate) + ' - ' + str(edate))
        stdvarname = variable_info[varalias]['standard_name']
#        for i in range(1):
        try:
            self.stdvarname = stdvarname
            self.varalias = varalias
            self.units = variable_info[varalias].get('units')
            self.sdate = sdate
            self.edate = edate
            self.nID = nID
            self.sensor = sensor
            self.obstype = 'insitu'
            if ('tags' in insitu_dict[nID].keys() and
            len(insitu_dict[nID]['tags'])>0):
                self.tags = insitu_dict[nID]['tags']
            print(" ")
            print(" ## Read files ...")
            t0=time.time()
            if filterData == False:
                vardict, fifo, pathtofile = \
                    get_insitu_ts(\
                                nID = nID,
                                sensor = sensor,
                                sdate = sdate,
                                edate = edate,
                                varalias = varalias,
                                basedate = self.basedate,
                                dict_for_sub = vars(self),
                                **kwargs)
            elif filterData == True:
                # determine start and end date
                if 'stwin' not in kwargs.keys():
                    kwargs['stwin'] = 3
                if 'etwin' not in kwargs.keys():
                    kwargs['etwin'] = 0
                sdate_new = sdate - timedelta(hours=kwargs['stwin'])
                edate_new = edate + timedelta(hours=kwargs['etwin'])
                tmp_vardict, fifo, pathtofile = \
                    get_insitu_ts(
                                nID = nID,
                                sensor = sensor,
                                sdate = sdate_new,
                                edate = edate_new,
                                varalias = varalias,
                                basedate = self.basedate,
                                dict_for_sub = vars(self),
                                **kwargs)
                vardict = filter_main(tmp_vardict,
                                      varalias=varalias,
                                      **kwargs)
                # cut to original sdate and edate
                time_cut = np.array(vardict['time'])[ \
                                ( (np.array(vardict['datetime'])>=sdate)
                                & (np.array(vardict['datetime'])<=edate)
                                ) ]
                var_cut = np.array(vardict[stdvarname])[ \
                                ( (np.array(vardict['datetime'])>=sdate)
                                & (np.array(vardict['datetime'])<=edate)
                                ) ]
                lon_cut = np.array(vardict['longitude'])[ \
                                ( (np.array(vardict['datetime'])>=sdate)
                                & (np.array(vardict['datetime'])<=edate)
                                ) ]
                lat_cut = np.array(vardict['latitude'])[ \
                                ( (np.array(vardict['datetime'])>=sdate)
                                & (np.array(vardict['datetime'])<=edate)
                                ) ]
                dtime_cut = np.array(vardict['datetime'])[ \
                                ( (np.array(vardict['datetime'])>=sdate)
                                & (np.array(vardict['datetime'])<=edate)) ]
                vardict['time'] = list(time_cut)
                vardict['datetime'] = list(dtime_cut)
                vardict[stdvarname] = list(var_cut)
                vardict['longitude'] = list(lon_cut)
                vardict['latitude'] = list(lat_cut)
                self.filter = True
                self.filterSpecs = kwargs
            self.vars = vardict
            self.lat = np.nanmean(vardict['latitude'])
            self.lon = np.nanmean(vardict['longitude'])
            if fifo == 'nc':
                print(pathtofile)
                meta = ncdumpMeta(sdate.strftime(pathtofile))
                self.vars['meta'] = meta
                varname = get_filevarname(varalias,
                                          variable_info,
                                          insitu_dict[nID],
                                          meta)
                self.varname = varname
            else:
                self.varname = varalias
            if fifo == 'frost':
                self.sensor = sensor
            t1=time.time()
            print(" ")
            print( '## Summary:')
            print(str(len(self.vars['time'])) + " values retrieved.")
            print("Time used for retrieving insitu data:",\
                   round(t1-t0,2),"seconds")
            print(" ")
            print (" ### insitu_class object initialized ### ")
        except Exception as e:
            print(e)
            self.error = e
            print ("! No insitu_class object initialized !")
        print ('# ----- ')