Exemplo n.º 1
0
def get_elections_profile(geo_code, geo_level):
    data = OrderedDict()
    session = get_session()
    try:
        geo_summary_levels = geo_data.get_summary_geo_info(geo_code, geo_level)

        for election in ELECTIONS:
            section = election['name'].lower().replace(' ', '_')
            data[section] = get_election_data(geo_code, geo_level, election, session)

            # get profiles for province and/or country
            for level, code in geo_summary_levels:
                # merge summary profile into current geo profile
                merge_dicts(data[section], get_election_data(code, level, election, session), level)

            # tweaks to make the data nicer
            # show 8 largest parties on their own and group the rest as 'Other'
            group_remainder(data[section]['party_distribution'], 9)

        if geo_level == 'country':
            add_elections_media_coverage(data)

        return data
    finally:
        session.close()
Exemplo n.º 2
0
def get_census_profile(geo_code, geo_level, profile_name=None):
    session = get_session()

    try:
        geo_summary_levels = geo_data.get_summary_geo_info(geo_code, geo_level)
        data = {}

        for section in PROFILE_SECTIONS:
            function_name = 'get_%s_profile' % section
            if function_name in globals():
                func = globals()[function_name]
                data[section] = func(geo_code, geo_level, session)

                # get profiles for province and/or country
                for level, code in geo_summary_levels:
                    # merge summary profile into current geo profile
                    merge_dicts(data[section], func(code, level, session),
                                level)

    finally:
        session.close()

    if geo_level != 'vdc':
        group_remainder(data['demographics']['language_distribution'], 10)
        group_remainder(data['demographics']['ethnic_distribution'], 10)

    return data
Exemplo n.º 3
0
    def dataset_context_stat_data(self):
        """
        Calulate statistical data with a particular context
        """
        with dataset_context(year=str(self.profile.dataset_context)):
            try:
                self.distribution, self.total = get_stat_data(
                    [self.profile.field_name],
                    self.geo,
                    self.session,
                    table_name=self.profile.table_name.name,
                    exclude_zero=self.profile.exclude_zero,
                    percent=self.profile.percent,
                    recode=self.profile.recode,
                    key_order=self.profile.key_order,
                    exclude=self.profile.exclude,
                    order_by=self.profile.order_by,
                )
                self.compare_geos()

                if self.profile.group_remainder:
                    group_remainder(self.distribution, self.profile.group_remainder)

                self.distribution = enhance_api_data(self.distribution)
                return {"stat_values": self.distribution}
            except DataNotFound:
                return {}
Exemplo n.º 4
0
    def stat_data(self):
        """
        Calculate the statistical data
        """
        try:
            self.distribution, self.total = get_stat_data(
                [self.profile.field_name],
                self.geo,
                self.session,
                table_name=self.profile.table_name.name,
                exclude_zero=self.profile.exclude_zero,
                percent=self.profile.percent,
                recode=self.profile.recode,
                key_order=self.profile.key_order,
                exclude=self.profile.exclude,
                order_by=self.profile.order_by,
            )
            self.compare_geos()
            if self.profile.group_remainder:
                group_remainder(self.distribution, self.profile.group_remainder)

            self.distribution = enhance_api_data(self.distribution)
            return {"stat_values": self.distribution}
        except KeyError as error:
            log.warn(
                "Unable to calculate statistics for profile: %s", self.profile.title
            )
            log.warn("error: %s", error)
            return {}
        except DataNotFound as error:
            log.warn(
                "Unable to calculate statistics for profile: %s", self.profile.title
            )
            log.warn("Unable to find data for this indicator: %s", error)
            return {}
Exemplo n.º 5
0
def get_census_profile(geo, profile_name, request):
    geo.version = str(geo.version)
    session = get_session()
    year = current_context().get('year')
    try:
        data = {}
        sections = []
        selected_sections = []

        for cat in SECTIONS:
            sections.extend(SECTIONS[cat]['profiles'])

        for section in sections:
            section = section.lower().replace(' ', '_')
            function_name = 'get_%s_profile' % section
            if function_name in globals():
                func = globals()[function_name]
                data[section] = func(geo, session)

        # tweaks to make the data nicer
        # show X largest groups on their own and group the rest as 'Other'
        if 'households' in sections:
            group_remainder(data['households']['roofing_material_distribution'], 5)
            group_remainder(data['households']['wall_material_distribution'], 5)

        data['all_sections'] = SECTIONS
        data['primary_release_year'] = year
        if (selected_sections == []): selected_sections = sections
        data['raw_selected_sections'] = selected_sections
        data['selected_sections'] = [x.replace(' ','_').lower() for x in selected_sections]
        data['afrobarometer'] = get_afrobarometer_profile(geo, session)
        return data

    finally:
        session.close()
Exemplo n.º 6
0
def get_census_profile(geo_code, geo_level, profile_name=None):
    session = get_session()

    try:
        geo_summary_levels = geo_data.get_summary_geo_info(geo_code, geo_level)
        data = {}

        for section in PROFILE_SECTIONS:
            function_name = 'get_%s_profile' % section
            if function_name in globals():
                func = globals()[function_name]
                data[section] = func(geo_code, geo_level, session)

                # get profiles for province and/or country
                for level, code in geo_summary_levels:
                    # merge summary profile into current geo profile
                    merge_dicts(data[section], func(code, level, session), level)

        # tweaks to make the data nicer
        # show X largest groups on their own and group the rest as 'Other'
        group_remainder(data['households']['roofing_material_distribution'], 5)
        group_remainder(data['households']['wall_material_distribution'], 5)

        return data

    finally:
        session.close()
Exemplo n.º 7
0
def get_census_profile(geo, profile_name, request):
    geo.version = str(geo.version)
    session = get_session()
    try:
        data = {}
        sections = []
        selected_sections = []

        for cat in SECTIONS:
            sections.extend(SECTIONS[cat]['profiles'])

        for section in sections:
            section = section.lower().replace(' ', '_')
            function_name = 'get_%s_profile' % section
            if function_name in globals():
                func = globals()[function_name]
                data[section] = func(geo, session)

        # tweaks to make the data nicer
        # show X largest groups on their own and group the rest as 'Other'
        if 'households' in sections:
            group_remainder(data['households']['roofing_material_distribution'], 5)
            group_remainder(data['households']['wall_material_distribution'], 5)

        data['all_sections'] = SECTIONS
        if (selected_sections == []): selected_sections = sections
        data['raw_selected_sections'] = selected_sections
        data['selected_sections'] = [x.replace(' ','_').lower() for x in selected_sections]
        return data

    finally:
        session.close()
Exemplo n.º 8
0
def get_profile(geo, profile_name, request):
    session = get_session()

    try:
        comp_geos = geo_data.get_comparative_geos(geo)
        data = {}
        sections = list(PROFILE_SECTIONS)
        if geo.geo_level not in [
                'country', 'province', 'district', 'municipality'
        ]:
            pass
            # Raise error as we don't have this data
        """
        The following is temporary and enables us to determine what to display for geos:

        Within WC: All indicators, with WC as root comparisson geo
        Outside WC: Some indicators, with ZA as root comparrison geo

        This is beacause Wazimap expects data for all geos.
        This will be removed once we have imported all the data.
        """
        # There are datasets with only WC information
        display_profile = 'WC' if (
            geo.geo_code == 'WC' or 'WC' in [cg.geo_code
                                             for cg in comp_geos]) else 'ZA'

        data['display_profile'] = display_profile
        data['primary_release_year'] = current_context().get('year')

        for section in sections:
            function_name = 'get_%s_profile' % section

            if function_name in globals():
                func = globals()[function_name]
                data[section] = func(geo, session, display_profile)

                # get profiles for province and/or country
                for comp_geo in comp_geos:
                    # merge summary profile into current geo profile
                    merge_dicts(
                        data[section],
                        func(comp_geo,
                             session,
                             display_profile,
                             comparative=True), comp_geo.geo_level)

        # Make data look nicer on profile page
        group_remainder(data['demographics']['youth_population_by_language'],
                        11)

        return data

    finally:
        session.close()
Exemplo n.º 9
0
def get_profile(geo, profile_name, request):
    session = get_session()

    try:
        comp_geos = geo_data.get_comparative_geos(geo)
        data = {}
        sections = list(PROFILE_SECTIONS)
        if geo.geo_level not in ['country', 'province', 'district', 'municipality']:
            pass
            # Raise error as we don't have this data

        """
        The following is temporary and enables us to determine what to display for geos:

        Within WC: All indicators, with WC as root comparisson geo
        Outside WC: Some indicators, with ZA as root comparrison geo

        This is beacause Wazimap expects data for all geos.
        This will be removed once we have imported all the data.
        """
        # There are datasets with only WC information
        display_profile = 'WC' if (geo.geo_code == 'WC' or 'WC' in [cg.geo_code for cg in comp_geos]) else 'ZA'

        data['display_profile'] = display_profile
        data['primary_release_year'] = current_context().get('year')

        for section in sections:
            function_name = 'get_%s_profile' % section

            if function_name in globals():
                func = globals()[function_name]
                data[section] = func(geo, session, display_profile)

                # get profiles for province and/or country
                for comp_geo in comp_geos:
                    # merge summary profile into current geo profile
                    merge_dicts(data[section], func(comp_geo, session, display_profile, comparative=True), comp_geo.geo_level)

        # Make data look nicer on profile page
        group_remainder(data['demographics']['youth_population_by_language'], 11)

        return data

    finally:
        session.close()
Exemplo n.º 10
0
def get_profile(geo, profile_name, request):
    session = get_session()
    try:
        comparative_geos = geo_data.get_comparative_geos(geo)
        data = {}
        sections = []

        for cat in SECTIONS:
            sections.extend(SECTIONS[cat]['profiles'])

        for section in sections:
            section = section.lower().replace(' ', '_')
            function_name = 'get_%s_profile' % section

            if function_name in globals():
                func = globals()[function_name]

                # get profiles for comperative geometries
                data[section] = func(geo, session)

                # get profiles for comparative geometries
                for comp_geo in comparative_geos:
                    try:
                        merge_dicts(data[section], func(comp_geo, session),
                                    comp_geo.geo_level)
                    except KeyError as e:
                        msg = "Error merging data into %s for section '%s' from %s: KeyError: %s" % (
                            geo.geoid, section, comp_geo.geoid, e)
                        log.fatal(msg, exc_info=e)
                        raise ValueError(msg)

        # tweaks to make the data nicer
        # show X largest groups on their own and group the rest as 'Other'
        if 'households' in sections:
            group_remainder(
                data['households']['roofing_material_distribution'], 5)
            group_remainder(data['households']['wall_material_distribution'],
                            5)

        return data

    finally:
        session.close()
Exemplo n.º 11
0
def get_profile(geo, profile_name, request):
    session = get_session()

    try:
        comp_geos = geo_data.get_comparative_geos(geo)
        data = {}

        sections = list(PROFILE_SECTIONS)
        if geo.geo_level not in ['country', 'province', 'municipality']:
            pass
            # Raise error as we don't have this data

        for section in sections:
            function_name = 'get_%s_profile' % section
            if function_name in globals():
                func = globals()[function_name]
                data[section] = func(geo, session)

                # get profiles for province and/or country
                for comp_geo in comp_geos:
                    # merge summary profile into current geo profile
                    merge_dicts(data[section], func(comp_geo, session),
                                comp_geo.geo_level)

        group_remainder(data['households']['type_of_dwelling_distribution'], 5)
        group_remainder(data['service_delivery']['water_source_distribution'],
                        5)
        group_remainder(
            data['service_delivery']['toilet_facilities_distribution'], 5)

        return data

    finally:
        session.close()
Exemplo n.º 12
0
def get_profile(geo, profile_name, request):
    session = get_session()

    try:
        comp_geos = geo_data.get_comparative_geos(geo)
        data = {}

        sections = list(PROFILE_SECTIONS)
        if geo.geo_level not in ['country', 'province', 'municipality']:
            pass
            # Raise error as we don't have this data

        for section in sections:
            function_name = 'get_%s_profile' % section
            if function_name in globals():
                func = globals()[function_name]
                data[section] = func(geo, session)

                # get profiles for province and/or country
                for comp_geo in comp_geos:
                    # merge summary profile into current geo profile
                    merge_dicts(data[section], func(comp_geo, session), comp_geo.geo_level)

        group_remainder(data['households']['type_of_dwelling_distribution'], 5)
        group_remainder(data['service_delivery']['water_source_distribution'], 5)
        group_remainder(data['service_delivery']['toilet_facilities_distribution'], 5)

        return data

    finally:
        session.close()
Exemplo n.º 13
0
def get_elections_profile(geo):
    ELECTIONS = [
        {
            'name': 'Municipal 2016',
            'table_code': 'municipal_2016',
            'dataset': '2016 Municipal Elections',
            'geo_version': '2016',
            'release_year': '2016'
        },
    ]
    if geo.version == '2011' or geo.geo_level != 'ward':
        ELECTIONS.extend([
            {
                'name': 'National 2014',
                'table_code': 'national_2014',
                'dataset': '2014 National Elections',
                'geo_version': '2011',
                'release_year': '2014'
            },
            {
                'name': 'Provincial 2014',
                'table_code': 'provincial_2014',
                'dataset': '2014 Provincial Elections',
                'geo_version': '2011',
                'release_year': '2014'
            },
            {
                'name': 'Municipal 2011',
                'table_code': 'municipal_2011',
                'dataset': '2011 Municipal Elections',
                'geo_version': '2011',
                'release_year': '2011'
            },
        ])
    data = OrderedDict()
    session = get_session()
    try:
        comparative_geos = geo_data.get_comparative_geos(geo)

        for election in ELECTIONS:
            section = election['name'].lower().replace(' ', '_')
            # TODO: Hack to request data for different geo_version than this geo.
            actual_geo_version = geo.version
            geo.version = election['geo_version']
            # If we can't find election data with the relevant geo version then
            # we don't want to show anything for this election.
            election_data = None
            try:
                election_data = get_election_data(geo, election, session)
            except DataNotFound:
                pass
            finally:
                geo.version = actual_geo_version
            if election_data:
                data[section] = election_data
                # get profiles for province and/or country
                for comp_geo in comparative_geos:
                    comp_geo.version = election['geo_version']
                    merge_dicts(data[section], get_election_data(comp_geo, election, session), comp_geo.geo_level)

                # tweaks to make the data nicer
                # show 8 largest parties on their own and group the rest as 'Other'
                group_remainder(data[section]['party_distribution'], 9)

        if geo.geo_level == 'country':
            add_elections_media_coverage(data)

        return data
    finally:
        session.close()
Exemplo n.º 14
0
def get_profile(geo, profile_name, request):
    session = get_session()

    try:
        comparative_geos = geo_data.get_comparative_geos(geo)
        data = {}

        sections = list(PROFILE_SECTIONS)
        if geo.geo_level in ['country', 'province']:
            sections.append('crime')

        for section in sections:
            function_name = 'get_%s_profile' % section
            if function_name in globals():
                func = globals()[function_name]
                data[section] = func(geo, session)

                # get profiles for comparative geometries
                for comp_geo in comparative_geos:
                    try:
                        merge_dicts(data[section], func(comp_geo, session), comp_geo.geo_level)
                    except KeyError as e:
                        msg = "Error merging data into %s for section '%s' from %s: KeyError: %s" % (geo.geoid, section, comp_geo.geoid, e)
                        log.fatal(msg, exc_info=e)
                        raise ValueError(msg)
    finally:
        session.close()

    # tweaks to make the data nicer
    # show 3 largest groups on their own and group the rest as 'Other'
    group_remainder(data['service_delivery']['water_source_distribution'], 5)
    group_remainder(data['service_delivery']['refuse_disposal_distribution'], 5)
    group_remainder(data['service_delivery']['toilet_facilities_distribution'], 5)
    group_remainder(data['demographics']['language_distribution'], 7)
    group_remainder(data['demographics']['province_of_birth_distribution'], 7)
    group_remainder(data['demographics']['region_of_birth_distribution'], 5)
    group_remainder(data['households']['type_of_dwelling_distribution'], 5)
    group_remainder(data['child_households']['type_of_dwelling_distribution'], 5)

    data['elections'] = get_elections_profile(geo)

    return data
Exemplo n.º 15
0
def get_profile(geo_code, geo_level, profile_name=None):
    session = get_session()

    try:
        geo_summary_levels = geo_data.get_summary_geo_info(geo_code, geo_level)
        data = {}

        sections = list(PROFILE_SECTIONS)
        if geo_level in ['country', 'province']:
            sections.append('crime')

        for section in sections:
            function_name = 'get_%s_profile' % section
            if function_name in globals():
                func = globals()[function_name]
                data[section] = func(geo_code, geo_level, session)

                # get profiles for province and/or country
                for level, code in geo_summary_levels:
                    # merge summary profile into current geo profile
                    merge_dicts(data[section], func(code, level, session), level)
    finally:
        session.close()

    # tweaks to make the data nicer
    # show 3 largest groups on their own and group the rest as 'Other'
    group_remainder(data['service_delivery']['water_source_distribution'], 5)
    group_remainder(data['service_delivery']['refuse_disposal_distribution'], 5)
    group_remainder(data['service_delivery']['toilet_facilities_distribution'], 5)
    group_remainder(data['demographics']['language_distribution'], 7)
    group_remainder(data['demographics']['province_of_birth_distribution'], 7)
    group_remainder(data['demographics']['region_of_birth_distribution'], 5)
    group_remainder(data['households']['type_of_dwelling_distribution'], 5)
    group_remainder(data['child_households']['type_of_dwelling_distribution'], 5)

    data['elections'] = get_elections_profile(geo_code, geo_level)

    return data