Exemplo n.º 1
0
]

# A thread-safe task queue that stores actions to perform against Reddit
task_queue = SimpleQueue()

# Config the logger
logging.basicConfig(filename='weather_output.log',
                    filemode='w',
                    level=logging.INFO)

# Set up the weather API for later usage
config = configparser.ConfigParser()
config.read('weather_api.ini')
api_key = config['weatherbit.io']['api_key']
weather_api = Api(api_key)
weather_api.set_granularity('daily')

# Load locations to check from stored CSV file
locations = []
with open('top_150_cities.csv', newline='') as csvfile:
    reader = csv.DictReader(csvfile, fieldnames=['city', 'region', 'id'])
    for row in reader:
        locations.append(row)

# Setup Reddit Connection
reddit = praw.Reddit(
    'niceweatherbot',
    user_agent='python:niceweatherbot:v1.0.0 (by u/jakekarnes42)')

# Create a thread pool
pool = ThreadPoolExecutor()
Exemplo n.º 2
0
from machine import Pin
from time import localtime, sleep
from weatherbit.api import Api
import threading

api_key = "key"
lat = 49.44684
lon = 8.357229999999959
api = Api(api_key)
api.set_granularity('daily')


class MQTT_subcriber():  #Class for controlling the ESP
    pass


def auto_water(
):  #This function looks what the forecast says and let flow enough water for everything
    pass


def manuell():  #function for manuell control e.g. if it is not enough water
    pass


threading.Thread(target=auto_water).start()
threading.Thread(target=manuell).start()
Exemplo n.º 3
0
class weatherbit(awp): 
  def __init__(self, location, listOfTimePredictions) :
    self.name = "weatherbit"
    self.allowedTimePredictions = "N-N-0"
    
    super(weatherbit, self).__init__(self.name, listOfTimePredictions)

    self.login()
    self.setLocation(location)

  def login(self):
    if self.login_data["apikey"] :
      self.api = Api(self.login_data["apikey"])

    else :
      warnings.warn('MWP_WARNING. The "%s" Weather Package(WP) has not been \
properly activated due to the apikey' % (self.name.upper()))
   
  def setLocation(self,location):
    self.forecast = self.api.get_forecast(lat=location[0],lon=location[1])
  
  def update(self,days=["ALL"]) :
    listOfTimePredictions = self.WD.keys()
    
    for api_periods in self.weather.keys() :
      if api_periods    == "daily" :
        self.api.set_granularity('daily')
        self.weather[api_periods] = self.forecast.get_series(['temp','precip','rh','wind_spd'])
      elif api_periods  == "hourly" :
        self.api.set_granularity('hourly')
        self.weather[api_periods] = self.forecast.get_series(['temp','precip','rh','wind_spd'])
      elif api_periods  == "currently" :
        self.api.set_granularity('hourly')
        self.weather[api_periods] = self.forecast.get_series(['temp','precip','rh','wind_spd'])[0]

    for timePrediction in listOfTimePredictions :
      self.setTemperature(timePrediction)
      self.setWindVelocity(timePrediction)
      self.setRainProbability(timePrediction)
      self.setRainIntensity(timePrediction)
      self.setRelativeHumidity(timePrediction)

  def setTemperature(self,timePrediction="0-0-0"):
    #Units: ºC
    value = self.setWeatherProperty(timePrediction,'temp') 
    self.WD[timePrediction]["Temperature"] = value

  def setWindVelocity(self,timePrediction="0-0-0"):
    #Units: m/s
    value = self.setWeatherProperty(timePrediction,'wind_spd') 
    self.WD[timePrediction]["WindVelocity"] = value

  def setRainProbability(self,timePrediction="0-0-0"):
    #Units: Percentatge [0-1]
    #Warning: Weatherbit does not calculate Weather Prediction
    self.WD[timePrediction]["RainProbability"] = None

  def setRainIntensity(self,timePrediction="0-0-0"):
    #Units: mm/hour
    value = self.setWeatherProperty(timePrediction,'precip') 
    self.WD[timePrediction]["RainIntensity"] = value

  def setRelativeHumidity(self,timePrediction="0-0-0"):
    #Units: Percentatge [0-1]
    value = self.setWeatherProperty(timePrediction,'rh') 
    self.WD[timePrediction]["RelativeHumidity"] = value/100.0 if value else value

  def setWeatherProperty(self,timePrediction,WP) :
    value = None
    day, hour, minute, predictionType = decomposeTimePrediction(timePrediction)

    try :
      if day :
        value = self.weather[predictionType][day][WP]
      elif hour : # N hours
        value = self.weather[predictionType][hour][WP]
      elif not day  and \
           not hour and \
           not minute :
        value = self.weather[predictionType][WP]
    except :
      print("WP[%s]: \"%s\" is not available for \"%s\" prediction. " % (self.name,WP,predictionType))

    return value
Exemplo n.º 4
0
        model_best_cv, [model_best_val, model_best_test]))
    print('--Best model in CV not best in val and in test datasets/n')
# plot metrics
# df_metrics.pivot(index='df', columns='model', values='MSE').plot()
# df_metrics.dtypes

# get datetime column from date and period by mapping time and period with "df_map_HH_Period"
# plt.scatter(x = df_train['pred.GradBoostRegr'], y = df_train['dmd_coeff'])

###################################################################################################################################################
################
#### Step 5 ####
################
from weatherbit.api import Api  # pip install pyweatherbit
api_call = Api(key_API_WeatherFct)
api_call.set_granularity('daily')  # 'hourly', '3hourly'
df_weather_Fct = pd.DataFrame()
for iCity in list_cities:
    print('{}: Downloading Weather Forecast for {}'.format(
        ddt.now().strftime('%d%b%Y %H:%M:%S:'), iCity))
    tmp_df_weather_fct = pd.DataFrame(
        api_call.get_forecast(city=iCity, country='GB').get_series(
            ['temp', 'max_temp', 'min_temp', 'precip']))
    tmp_df_weather_fct['City'] = iCity
    df_weather_Fct = df_weather_Fct.append(tmp_df_weather_fct)
# simple daily average; more accurate would be to have a population- or other-weighted average temperature; other measure for wind speed
df_weather_Fct_avg = df_weather_Fct[[
    'datetime', 'temp'
]].groupby('datetime').mean().reset_index()
df_weather_Fct_avg['date'], df_weather_Fct_avg['time'] = df_weather_Fct_avg[
    'datetime'].dt.date, df_weather_Fct_avg['datetime'].dt.time
# Class for making Weatherbit API calls. This class will be instantiated as a
# singleton to gather all necessary information from the API.
from weatherbit.api import Api
import API_Key
import json

# Get the private key string from API_KEY.
api_key = API_Key.API_Key().Weatherbit_Key

# Authenticate our API Key. This variable will be used for all API calls.
weatherbit = Api(api_key)

# Set the API for retrieving the daily forecast.
weatherbit.set_granularity('daily')


# Gets the forecast for the current day.
# Params:
#   lat:    Float: The latitude of the city.
#   long:   Float: The longitude of the city.
# Return: List containing the precipitation, average temperature, and max
# temperature per hour from midnight to the current hour.
def get_daily_forecast(lat, long):
    forecast = weatherbit.get_forecast(lat=lat, lon=long)
    precip = forecast.json['data'][0]['precip']
    precip = precip / 25.4  # Convert mm to inches
    avg_temp = forecast.json['data'][0]['temp']
    avg_temp = avg_temp * 1.8 + 32  # Convert Celsius to Fahrenheit
    max_temp = forecast.json['data'][0]['max_temp']
    max_temp = max_temp * 1.8 + 32
    weather = [precip, avg_temp, max_temp]