Exemplo n.º 1
0
    def __init__(self, bs_cutoff=0.8*unit.nanometer):

        # must set this here since we need it to generate the state,
        # will get called again in the superclass method
        self.getState_kwargs = dict(GET_STATE_KWARG_DEFAULTS)
        if self.GET_STATE_KWARGS is not None:
            self.getState_kwargs.update(self.GET_STATE_KWARGS)

        test_sys = LysozymeImplicit()

        # set the box vectors to something reasonable

        # we have a constructor which uses a constant we set in the
        # class to do this
        box_vectors = self.box_vectors()

        # set them to the test system
        test_sys.system.setDefaultPeriodicBoxVectors(
            box_vectors[0],
            box_vectors[1],
            box_vectors[2],
        )

        init_state = self.make_state(test_sys.system, test_sys.positions)

        lig_idxs = self.ligand_idxs()
        bs_idxs = self.binding_site_idxs(bs_cutoff)

        distance = UnbindingDistance(ligand_idxs=lig_idxs,
                                     binding_site_idxs=bs_idxs,
                                     ref_state=init_state)


        super().__init__(
            distance=distance,
            init_state=init_state,
            system=test_sys.system,
            topology=test_sys.topology,
        )
Exemplo n.º 2
0
def main(n_runs,
         n_cycles,
         steps,
         n_walkers,
         n_workers=1,
         debug_prints=False,
         seed=None):
    ## Load objects needed for various purposes

    # load a json string of the topology
    with open(json_top_path, mode='r') as rf:
        sEH_TPPU_system_top_json = rf.read()

    # an openmm.State object for setting the initial walkers up
    with open(omm_state_path, mode='rb') as rf:
        omm_state = pickle.load(rf)

    ## set up the OpenMM Runner

    # load the psf which is needed for making a system in OpenMM with
    # CHARMM force fields
    psf = omma.CharmmPsfFile(charmm_psf_path)

    # set the box size lengths and angles
    lengths = [CUBE_LENGTH for i in range(3)]
    angles = [CUBE_ANGLE for i in range(3)]
    psf.setBox(*lengths, *angles)

    # charmm forcefields parameters
    params = omma.CharmmParameterSet(*charmm_param_paths)

    # create a system using the topology method giving it a topology and
    # the method for calculation
    system = psf.createSystem(params,
                              nonbondedMethod=omma.CutoffPeriodic,
                              nonbondedCutoff=NONBONDED_CUTOFF,
                              constraints=omma.HBonds)

    # make this a constant temperature and pressure simulation at 1.0
    # atm, 300 K, with volume move attempts every 50 steps
    barostat = omm.MonteCarloBarostat(PRESSURE, TEMPERATURE, VOLUME_MOVE_FREQ)

    # add it as a "Force" to the system
    system.addForce(barostat)

    # make an integrator object that is constant temperature
    integrator = omm.LangevinIntegrator(TEMPERATURE, FRICTION_COEFFICIENT,
                                        STEP_SIZE)

    # set up the OpenMMRunner with the system
    runner = OpenMMRunner(system, psf.topology, integrator, platform=PLATFORM)

    # the initial state, which is used as reference for many things
    init_state = OpenMMState(omm_state)

    ## Make the distance Metric

    # load the crystal structure coordinates
    crystal_traj = mdj.load_pdb(pdb_path)

    # get the atoms in the binding site according to the crystal structure
    bs_idxs = binding_site_atoms(crystal_traj.top, LIG_RESID,
                                 crystal_traj.xyz[0])
    lig_idxs = ligand_idxs(crystal_traj.top, LIG_RESID)
    prot_idxs = protein_idxs(crystal_traj.top)

    # make the distance metric with the ligand and binding site
    # indices for selecting atoms for the image and for doing the
    # alignments to only the binding site. All images will be aligned
    # to the reference initial state
    unb_distance = UnbindingDistance(lig_idxs, bs_idxs, init_state)

    ## Make the resampler

    # make a Wexplore resampler with default parameters and our
    # distance metric
    resampler = WExploreResampler(distance=unb_distance,
                                  init_state=init_state,
                                  max_n_regions=MAX_N_REGIONS,
                                  max_region_sizes=MAX_REGION_SIZES,
                                  pmin=PMIN,
                                  pmax=PMAX)

    ## Make the Boundary Conditions

    # makes ref_traj and selects lingand_atom and protein atom  indices
    # instantiate a revo unbindingboudaryconditiobs
    ubc = UnbindingBC(cutoff_distance=CUTOFF_DISTANCE,
                      initial_state=init_state,
                      topology=crystal_traj.topology,
                      ligand_idxs=lig_idxs,
                      receptor_idxs=prot_idxs)

    ## make the reporters

    # WepyHDF5

    # make a dictionary of units for adding to the HDF5
    # open it in truncate mode first, then switch after first run
    hdf5_reporter = WepyHDF5Reporter(
        hdf5_path,
        mode='w',
        # the fields of the State that will be saved in the HDF5 file
        save_fields=SAVE_FIELDS,
        # the topology in a JSON format
        topology=sEH_TPPU_system_top_json,
        # the resampler and boundary
        # conditions for getting data
        # types and shapes for saving
        resampler=resampler,
        boundary_conditions=ubc,
        # the units to save the fields in
        units=dict(UNITS),
        # sparse (in time) fields
        sparse_fields=dict(SPARSE_FIELDS),
        # sparse atoms fields
        main_rep_idxs=np.concatenate((lig_idxs, prot_idxs)),
        all_atoms_rep_freq=ALL_ATOMS_SAVE_FREQ)

    dashboard_reporter = WExploreDashboardReporter(
        dashboard_path,
        mode='w',
        step_time=STEP_SIZE.value_in_unit(unit.second),
        max_n_regions=resampler.max_n_regions,
        max_region_sizes=resampler.max_region_sizes,
        bc_cutoff_distance=ubc.cutoff_distance)

    setup_reporter = SetupReporter(setup_state_path, mode='w')

    restart_reporter = RestartReporter(restart_state_path, mode='w')

    reporters = [
        hdf5_reporter, dashboard_reporter, setup_reporter, restart_reporter
    ]

    ## The work mapper

    # we use a mapper that uses GPUs
    work_mapper = WorkerMapper(worker_type=OpenMMGPUWorker,
                               num_workers=n_workers)

    ## Combine all these parts and setup the simulation manager

    # set up parameters for running the simulation
    # initial weights
    init_weight = 1.0 / n_walkers

    # a list of the initial walkers
    init_walkers = [
        Walker(OpenMMState(omm_state), init_weight) for i in range(n_walkers)
    ]

    # Instantiate a simulation manager
    sim_manager = Manager(init_walkers,
                          runner=runner,
                          resampler=resampler,
                          boundary_conditions=ubc,
                          work_mapper=work_mapper,
                          reporters=reporters)

    ### RUN the simulation
    for run_idx in range(n_runs):
        print("Starting run: {}".format(run_idx))
        sim_manager.run_simulation(n_cycles, steps, debug_prints=True)
        print("Finished run: {}".format(run_idx))
Exemplo n.º 3
0
def run_sim(init_state_path,
            json_top_path,
            forcefield_paths,
            n_cycles,
            n_steps,
            platform,
            n_workers,
            lig_ff=None,
            **kwargs):

    # add in the ligand force fields
    assert lig_ff is not None, "must give ligand forcefield"

    forcefield_paths.append(lig_ff)

    #### Wepy Orchestrator

    # load the wepy.OpenMMState
    with open(init_state_path, 'rb') as rf:
        init_state = pickle.load(rf)

    ### Apparatus

    # Runner components

    # load the JSON for the topology
    with open(json_top_path) as rf:
        json_top_str = rf.read()

    # load it with mdtraj and then convert to openmm
    mdj_top = json_to_mdtraj_topology(json_top_str)
    omm_topology = mdj_top.to_openmm()

    # we need to use the box vectors for setting the simulation up,
    # paying mind to the units
    box_vectors = init_state['box_vectors'] * init_state.box_vectors_unit
    positions = init_state['positions'] * init_state.positions_unit

    # set the box to the last box size from equilibration
    omm_topology.setPeriodicBoxVectors(box_vectors)

    # force field parameters
    force_field = omma.ForceField(*forcefield_paths)

    # create a system using the topology method giving it a topology and
    # the method for calculation
    runner_system = force_field.createSystem(omm_topology,
                                             nonbondedMethod=NONBONDED_METHOD,
                                             nonbondedCutoff=NONBONDED_CUTOFF,
                                             constraints=MD_CONSTRAINTS,
                                             rigidWater=RIGID_WATER,
                                             removeCMMotion=REMOVE_CM_MOTION,
                                             hydrogenMass=HYDROGEN_MASS)

    # barostat to keep pressure constant
    runner_barostat = omm.MonteCarloBarostat(PRESSURE, TEMPERATURE,
                                             VOLUME_MOVE_FREQ)
    # add it to the system
    runner_system.addForce(runner_barostat)

    # set up for a short simulation to runner and prepare
    # instantiate an integrator
    runner_integrator = omm.LangevinIntegrator(TEMPERATURE,
                                               FRICTION_COEFFICIENT, STEP_TIME)

    ## Runner
    runner = OpenMMRunner(runner_system,
                          omm_topology,
                          runner_integrator,
                          platform=platform)

    ## Resampler

    # Distance Metric

    lig_idxs = ligand_idxs(json_top_str)
    prot_idxs = protein_idxs(json_top_str)
    bs_idxs = binding_site_idxs(json_top_str, positions, box_vectors, CUTOFF)

    # set distance metric
    distance_metric = UnbindingDistance(lig_idxs, bs_idxs, init_state)

    # set resampler
    resampler = WExploreResampler(distance=distance_metric,
                                  init_state=init_state,
                                  max_n_regions=MAX_N_REGIONS,
                                  max_region_sizes=MAX_REGION_SIZES,
                                  pmin=PMIN,
                                  pmax=PMAX)

    ## Boundary Conditions

    # optional: set the boundary conditions
    bc = None

    ## CONFIGURATION

    # the idxs of the main representation to save in the output files,
    # it is just the protein and the ligand

    # optional: set the main representation atom indices, set to None
    # to save all the atoms in the 'positions' field
    main_rep_idxs = np.concatenate((lig_idxs, prot_idxs))

    # REPORTERS
    # list of reporter classes and partial kwargs for using in the
    # orchestrator

    hdf5_reporter_kwargs = {
        'main_rep_idxs': main_rep_idxs,
        'topology': json_top_str,
        'resampler': resampler,
        'boundary_conditions': bc,
        # general parameters
        'save_fields': SAVE_FIELDS,
        'units': dict(UNITS),
        'sparse_fields': dict(SPARSE_FIELDS),
        'all_atoms_rep_freq': ALL_ATOMS_SAVE_FREQ
    }

    # get all the reporters together. Order is important since they
    # will get paired with the kwargs
    reporter_classes = [
        WepyHDF5Reporter,
    ]

    # collate the kwargs in the same order
    reporter_kwargs = [
        hdf5_reporter_kwargs,
    ]

    # make the configuration with all these reporters and the default
    # number of workers. Don't be thrown off by this. You don't need
    # this. It is just a convenient way to dynamically name the
    # outputs of the reporters and parametrize the workers and worker
    # mappers. This is mainly for use in the Orchestrator framework
    # but it is useful here just for batch naming everything.
    configuration = Configuration(n_workers=DEFAULT_N_WORKERS,
                                  reporter_classes=reporter_classes,
                                  reporter_partial_kwargs=reporter_kwargs,
                                  config_name="no-orch",
                                  mode='w')

    # then instantiate the reporters from the configuration. THis
    # localizes the file paths to outputs and applies the key-word
    # arguments specified above.
    reporters = configuration._gen_reporters()

    print("created configuration")

    ### Initial Walkers
    init_walkers = [
        Walker(deepcopy(init_state), INIT_WEIGHT) for _ in range(N_WALKERS)
    ]

    print("created init walkers")

    ### Work Mapper
    if platform in ('OpenCL', 'CUDA'):
        # we use a mapper that uses GPUs
        work_mapper = WorkerMapper(worker_type=OpenMMGPUWorker,
                                   num_workers=n_workers)

    elif platform in ('CPU', ):
        # for the CPU we can choose how many threads to use per walker.
        worker_attributes = {'num_threads': N_CPU_THREADS}
        work_mapper = WorkerMapper(worker_type=OpenMMCPUWorker,
                                   worker_attributes=worker_attributes,
                                   num_workers=n_workers)

    elif platform in ('Reference', ):
        # we just use the standard mapper for in serial
        work_mapper = Mapper

    ### Simulation Manager
    sim_manager = Manager(init_walkers,
                          runner=runner,
                          resampler=resampler,
                          boundary_conditions=bc,
                          work_mapper=work_mapper,
                          reporters=reporters)

    ### Run the simulation
    steps = [n_steps for _ in range(n_cycles)]
    sim_manager.run_simulation(n_cycles, steps)
Exemplo n.º 4
0
## Runner
RUNNER = OpenMMRunner(system, psf.topology, integrator, platform=PLATFORM)

# the initial state, which is used as reference for many things
INIT_STATE = OpenMMState(MINIMIZED_INIT_OMM_STATE)

## Resampler

# Distance Metric

# make the distance metric with the ligand and binding site
# indices for selecting atoms for the image and for doing the
# alignments to only the binding site. All images will be aligned
# to the reference initial state
DISTANCE_METRIC = UnbindingDistance(LIG_IDXS, BS_IDXS, INIT_STATE)

# WExplore Resampler

# make a Wexplore resampler with default parameters and our
# distance metric
RESAMPLER = WExploreResampler(distance=DISTANCE_METRIC,
                               init_state=INIT_STATE,
                               max_n_regions=MAX_N_REGIONS,
                               max_region_sizes=MAX_REGION_SIZES,
                               pmin=PMIN, pmax=PMAX)

## Boundary Conditions

# makes ref_traj and selects lingand_atom and protein atom  indices
# instantiate a revo unbindingboudaryconditiobs