def build(self): self.inputs = { 'infile': InputFile('data/Known/{data_name}/known.h5'), 'sequence_file': InputFile('data/Known/{data_name}/sequences.fa') } self.outputs = { 'outfile': OutputFile('data/Known/{data_name}/deepfold/w={window_size}') }
def build(self): self.inputs = { 'score_file': InputFile('data/icSHAPE/{data_name}/icshape.h5'), 'sequence_file': InputFile() } self.outputs = { 'outfile': InputFile('reports/IcshapeBaseDistribution/{data_name}.pdf') }
def build(self): self.inputs = { 'infile': InputFile('data/icSHAPE/{data_name}/{region}'), 'sequence_file': InputFile( '/Share/home/shibinbin/data/gtf/gencode.{gencode_version}/sequences/{region}.transcript.fa' ) } self.outputs = { 'outfile': OutputFile( 'data/icSHAPE/{data_name}/deepfold/r={region},p={percentile},w={window_size},dense=1' ) }
def build(self): self.inputs = { 'model_file': InputFile( 'trained_models/{model_experiment_type}/{model_data_name}/p={percentile},w={window_size},m={model_name}.h5' ), 'infile': InputFile('data/Known/ct') } self.outputs = { 'outdir': OutputFile( 'output/deepfold/Known,{data_name}/{model_experiment_type},{model_data_name}/p={percentile},w={window_size},m={model_name}' ) }
def build(self): self.paramlist = [] for model_data_name in [ 'Lu_2016_invitro', 'Lu_2016_invivo', 'Lu_2016_invitro_published', 'Lu_2016_invivo_published', 'Spitale_2015_invitro', 'Spitale_2015_invivo' ]: model_paramlist = ParamFile( 'selected_models/icSHAPE/{}.json'.format( model_data_name)).to_list() for params in model_paramlist: if params['window_size'] >= 160: continue params['model_data_name'] = params['data_name'] params['model_experiment_type'] = 'icSHAPE' params['data_name'] = 'All' params['experiment_type'] = 'Known' self.paramlist.append(params) self.tool = ScoreStructure() self.tool.unique_name = 'd={data_name},md={model_data_name},p={percentile},w={window_size},m={model_name}' self.tool.inputs['indir'] = InputFile( 'output/RME/Known,{data_name}/{model_experiment_type},{model_data_name}/p={percentile},w={window_size},m={model_name}' ) self.tool.outputs['outfile'] = OutputFile( 'reports/StructurePredictionMetrics/RME/Known,{data_name}/{model_experiment_type},{model_data_name}/p={percentile},w={window_size},m={model_name}.txt' )
def build(self): sequence_names = open('data/Known/names.txt').read().split() self.paramlist = [] for model_data_name in [ 'Lu_2016_invitro', 'Lu_2016_invivo', 'Lu_2016_invitro_published', 'Lu_2016_invivo_published', 'Spitale_2015_invitro', 'Spitale_2015_invivo' ]: model_paramlist = ParamFile( 'selected_models/icSHAPE/{}.json'.format( model_data_name)).to_list() for params in model_paramlist: if params['window_size'] >= 160: continue params['model_data_name'] = params['data_name'] params['model_experiment_type'] = 'icSHAPE' params['data_name'] = 'All' params['experiment_type'] = 'Known' params['m'] = 0.1 params['gamma1'] = 0.1 params['gamma2'] = 0.1 for name in sequence_names: params_seq = dict(params) params_seq['sequence_name'] = name self.paramlist.append(params_seq) self.tool = RME() self.tool.unique_name = 'd={data_name},md={model_data_name},p={percentile},w={window_size},m={model_name},s={sequence_name}' self.tool.inputs['infile'] = InputFile( 'output/deepfold/Known,{data_name}/{model_experiment_type},{model_data_name}/p={percentile},w={window_size},m={model_name}/{sequence_name}' ) self.tool.outputs['outdir'] = OutputFile( 'output/RME/Known,{data_name}/{model_experiment_type},{model_data_name}/p={percentile},w={window_size},m={model_name}' )
def build(self): self.paramlist = ParamGrid({ 'data_name': ['Lu_2016_invitro', 'Lu_2016_invivo'] }).to_list() self.tool = BaseDistributionForIcshape() self.tool.inputs['sequence_file'] = InputFile( '~/data/genomes/fasta/Human/hg19.transcript.v19.fa')
def build(self): self.inputs = { 'infile': InputFile( 'data/{experiment_type}/{data_name}/deepfold/p={percentile},w={window_size}' ), 'model_file': InputFile( 'trained_models/{model_experiment_type}/{model_data_name}/p={percentile},w={window_size},m={model_name}' ) } self.outputs = { 'outfile': OutputFile( 'metrics/cross/{experiment_type},{data_name}/{model_experiment_type},{model_data_name}/p={percentile},w={window_size},m={model_name}' ) }
def build(self): self.inputs = { 'infile': InputFile( 'data/icSHAPE/{data_name}/deepfold/r={region},p={percentile},w={window_size}' ), 'model_file': InputFile( 'trained_models/icSHAPE/{data_name}/r={region},p={percentile},w={window_size},m={model_name}' ) } self.outputs = { 'outfile': OutputFile( 'metrics/icSHAPE/{data_name}/r={region},p={percentile},w={window_size},m={model_name}' ) }
def build(self): self.inputs = { 'infile': InputFile('data/Known/{data_name}/deepfold/w={window_size}') } self.outputs = { 'model_file': OutputFile( 'trained_models/Known/{data_name}/w={window_size},m={model_name}' ) }
def build(self): sequence_dir = 'data/Known/fasta' sequence_names = map(lambda x: os.path.splitext(x)[0], os.listdir(sequence_dir)) self.paramlist = ParamGrid({ 'data_name': ['All'], 'sequence_name': sequence_names }).to_list() self.tool = Fold() self.tool.unique_name = 'd={data_name},s={sequence_name}' self.tool.inputs['infile'] = InputFile( 'data/Known/fasta/{sequence_name}.fa') self.tool.outputs['outfile'] = OutputFile( 'output/Fold/Known/{sequence_name}.ct')
def build(self): self.paramlist = [] for data_name in [ 'Lu_2016_invivo', 'Lu_2016_invitro', 'Lu_2016_invitro_published', 'Lu_2016_invivo_published', 'Spitale_2015_invivo', 'Spitale_2015_invitro' ]: paramlist = ParamFile( 'selected_models/icSHAPE/{}.json'.format(data_name)).to_list() for params in paramlist: params['experiment_type'] = 'Known' params['model_experiment_type'] = 'icSHAPE' params['data_name'] = 'All' params['model_data_name'] = data_name self.paramlist += paramlist self.tool = EvaluateDeepfold1DCross() self.tool.command += ' --swap-labels' self.tool.inputs['infile'] = InputFile( 'data/{experiment_type}/{data_name}/deepfold/w={window_size}.h5')
def build(self): self.inputs = {'pred_dir': InputFile()} self.outputs = {'outfile': InputFile()}
def build(self): self.inputs = {'infile': InputFile()} self.outputs = {'outdir': OutputFile()}
def build(self): super(self.__class__, self).build() self.inputs['infile'] = InputFile( 'data/icSHAPE/{data_name}/deepfold/r={region},p={percentile},w={window_size},dense=1' )