def init_workflow(self):
        # === Create the AccumulatedObjects. ===
        self.frame.add_accumulated_value("lossTest", 10)

        self.frame.AV["loss"].avgWidth = 10

        # ======= AVP. ======
        # === Create a AccumulatedValuePlotter object for ploting. ===
        if (True == self.flagUseIntPlotter):
            self.frame.AVP.append(\
                WorkFlow.PLTIntermittentPlotter(\
                    self.frame.workingDir + "/IntPlot",
                    "loss", self.frame.AV, ["loss"], [True], semiLog=True) )

            self.frame.AVP.append(\
                WorkFlow.PLTIntermittentPlotter(\
                    self.frame.workingDir + "/IntPlot",
                    "lossTest", self.frame.AV, ["lossTest"], [True], semiLog=True) )
        else:
            self.frame.AVP.append(\
                WorkFlow.VisdomLinePlotter(\
                    "loss", self.frame.AV, ["loss"], [True], semiLog=True) )

            self.frame.AVP.append(\
                WorkFlow.VisdomLinePlotter(\
                    "lossTest", self.frame.AV, ["lossTest"], [True], semiLog=True) )
    def __init__(self, workingDir, prefix="", suffix=""):
        super(MyWF, self).__init__(workingDir, prefix, suffix)

        # === Custom member variables. ===
        self.countTrain = 0
        # self.countTest  = 0
        with np.load(join(datapath, filecat)) as cat_data:
            train_cat, val_cat, test_cat = cat_data['train'], cat_data[
                'valid'], cat_data['test']

        self.dataset = SketchDatasetHierarchy(train_cat)
        self.valset = SketchDatasetHierarchy(val_cat)

        self.sketchnet = SketchRnn(InputNum, HiddenNumLine, HiddenNumSketch,
                                   OutputNum)
        if LoadPretrain:
            self.sketchnet = self.load_model(self.sketchnet, modelname)
        if LoadLineModel:
            self.sketchnet.load_line_model(LineModel)

        self.sketchnet.cuda()

        self.criterion_mse = nn.MSELoss()
        self.optimizer = optim.Adam(
            self.sketchnet.parameters(),
            lr=Lr)  #get_high_params(), lr = Lr) #,weight_decay=1e-5)

        # === Create the AccumulatedObjects. ===
        self.AV['loss'].avgWidth = 100
        self.add_accumulated_value("loss_cons", 100)
        self.add_accumulated_value("test_loss_cons")
        self.add_accumulated_value("loss_kl", 100)
        self.add_accumulated_value("loss_kl_line", 100)
        self.add_accumulated_value("loss_cons_high", 100)
        # self.add_accumulated_value("loss_eof", 100)
        self.add_accumulated_value("test_loss")

        # === Create a AccumulatedValuePlotter object for ploting. ===
        self.AVP.append(WorkFlow.VisdomLinePlotter(\
                "train_test_loss", self.AV, ['loss', 'test_loss'], [True, False]))

        self.AVP.append(WorkFlow.VisdomLinePlotter(\
                "loss_kl", self.AV, ["loss_kl", "loss_kl_line"], [True, True]))

        self.AVP.append(WorkFlow.VisdomLinePlotter(\
                "loss_cons", self.AV, ["loss_cons", "test_loss_cons"], [True, False]))

        self.AVP.append(WorkFlow.VisdomLinePlotter(\
                "loss_cons_high", self.AV, ["loss_cons_high"], [True]))
Exemplo n.º 3
0
 def register_info_plotter(self, name, infoNames, avgFlags, subDir='IntPlot', flagSemiLog=False):
     if ( self.flagUseIntPlotter ):
         self.frame.AVP.append(\
             WorkFlow.PLTIntermittentPlotter(\
                 os.path.join(self.frame.workingDir, subDir), 
                 name, self.frame.AV, infoNames, avgFlags, semiLog=flagSemiLog) )
     else:
         self.frame.AVP.append(\
             WorkFlow.VisdomLinePlotter(\
                 name, self.frame.AV, infoNames, avgFlags, semiLog=flagSemiLog) )
Exemplo n.º 4
0
    def __init__(self, workingDir, prefix = "", suffix = ""):
        super(MyWF, self).__init__(workingDir, prefix, suffix)

        # === Custom member variables. ===
        logstr = ''
        for param in LogParamList: # record useful params in logfile 
            try: 
                logstr += param + ': '+ str(globals()[param]) + ', '
            except:
                pass
        self.logger.info(logstr) 

        # === Create the AccumulatedObjects. ===
        self.add_accumulated_value("loss2", 10)
        self.add_accumulated_value("lossLeap")
        self.add_accumulated_value("testAvg1", 10)
        self.add_accumulated_value("testAvg2", 20)
        self.add_accumulated_value("lossTest")
        # This should raise an exception.
        # self.add_accumulated_value("loss")

        # === Create a AccumulatedValuePlotter object for ploting. ===
        WorkFlow.VisdomLinePlotter.host = "http://128.237.179.115"
        WorkFlow.VisdomLinePlotter.port = 8097
        avNameList    = ["loss", "loss2", "lossLeap"]
        avAvgFlagList = [  True,   False,      True ]
        self.AVP.append(\
            WorkFlow.VisdomLinePlotter(\
                "Combined", self.AV, avNameList, avAvgFlagList)\
        )

        self.AVP.append(\
            WorkFlow.VisdomLinePlotter(\
                "loss", self.AV, ["loss"])\
        )

        self.AVP.append(\
            WorkFlow.VisdomLinePlotter(\
                "losse", self.AV, ["loss2"], [True])\
        )

        self.AVP.append(\
            WorkFlow.VisdomLinePlotter(\
                "lossLeap", self.AV, ["lossLeap"], [True])\
        )
        self.AVP[-1].title = "Loss Leap"

        self.AVP.append(\
            WorkFlow.VisdomLinePlotter(\
                "testAvg1", self.AV, ["testAvg1"], [True])\
        )

        self.AVP.append(\
            WorkFlow.VisdomLinePlotter(\
                "testAvg2", self.AV, ["testAvg2"], [True])\
        )

        # === Custom member variables. ===
        self.countTrain = 0
        self.countTest  = 0
Exemplo n.º 5
0
    def __init__(self, workingDir, prefix="", suffix=""):
        super(MyWF, self).__init__(workingDir, prefix, suffix)

        # === Custom member variables. ===
        self.countTrain = 0
        # self.countTest  = 0
        with np.load(join(datapath, filecat)) as cat_data:
            train_cat, val_cat, test_cat = cat_data['train'], cat_data[
                'valid'], cat_data['test']

        self.dataset = SketchDatasetHierarchy(train_cat)
        self.valset = SketchDatasetHierarchy(val_cat)

        self.sketchnet = StrokeRnn(InputNum, HiddenNum, OutputNum)
        if LoadPretrain:
            self.sketchnet = self.load_model(self.sketchnet, modelname)
        self.sketchnet.cuda()

        self.criterion_mse = nn.MSELoss(size_average=True)
        # self.criterion_ce = nn.CrossEntropyLoss(weight=torch.Tensor([1,10,100]).cuda(), size_average=Bidirection)
        self.optimizer = optim.Adam(self.sketchnet.parameters(),
                                    lr=Lr)  #,weight_decay=1e-5)

        # === Create the AccumulatedObjects. ===
        self.AV['loss'].avgWidth = 100
        self.add_accumulated_value("loss_cons", 100)
        self.add_accumulated_value("loss_kl", 100)
        self.add_accumulated_value("loss_loc", 100)
        self.add_accumulated_value("test_loss")

        # === Create a AccumulatedValuePlotter object for ploting. ===
        self.AVP.append(WorkFlow.VisdomLinePlotter(\
                "train_test_loss", self.AV, ['loss', 'test_loss'], [True, False]))

        self.AVP.append(WorkFlow.VisdomLinePlotter(\
                "loss_cons", self.AV, ["loss_cons", "loss_kl"], [True, True]))

        self.AVP.append(WorkFlow.VisdomLinePlotter(\
                "loss_cons", self.AV, ["loss_loc"], [True]))
    def __init__(self, params):
        super(MyWF, self).__init__(params["workDir"], params["jobPrefix"],
                                   params["jobSuffix"])

        self.params = params

        self.verbose = params["wfVerbose"]

        # === Create the AccumulatedObjects. ===
        self.AV["loss"].avgWidth = 10
        self.add_accumulated_value("lossTest", 2)

        # === Create a AccumulatedValuePlotter object for ploting. ===
        WorkFlow.VisdomLinePlotter.host = self.params["visdomHost"]
        WorkFlow.VisdomLinePlotter.port = self.params["visdomPort"]
        self.AVP.append(\
            WorkFlow.VisdomLinePlotter(\
                "loss", self.AV, \
                ["loss", "lossTest"], \
                [True, False], semiLog = True)\
        )

        # === Custom member variables. ===
        self.countTrain = 0
        self.countTest = 0

        # Cuda stuff.
        # self.cudaDev = None

        # ConvolutionalStereoNet.
        self.csn = None
        self.dataset = None
        self.dataLoader = None
        self.dlIter = None  # The iterator stems from self.dataLoader.
        self.datasetTest = None
        self.dataLoaderTest = None
        self.dlIterTest = None  # The iterator stems from self.dataLoaderTest.

        # Training variables.
        self.criterion = torch.nn.SmoothL1Loss()
        self.optimizer = None
Exemplo n.º 7
0
 def append_plotter(self, plotName, valueNameList, smoothList, semiLog=False):
     if self.plotterType == 'Visdom':
         self.AVP.append(WorkFlow.VisdomLinePlotter(plotName, self.AV, valueNameList, smoothList, semiLog=semiLog))
     elif self.plotterType == 'Int':
         self.AVP.append(WorkFlow.PLTIntermittentPlotter(self.workingDir + "/IntPlot", plotName, self.AV, valueNameList, smoothList, semiLog=semiLog))
Exemplo n.º 8
0
    def __init__(self, workingDir, prefix="", suffix=""):
        super(MyWF, self).__init__(workingDir, prefix, suffix)

        # === Custom member variables. ===
        logstr = ''
        for param in LogParamList:  # record useful params in logfile
            logstr += param + ': ' + str(globals()[param]) + ', '
        self.logger.info(logstr)

        self.countEpoch = 0
        self.countTrain = 0
        self.device = 'cuda'

        # Dataloader for the training and testing
        self.train_loader = torch.utils.data.DataLoader(datasets.MNIST(
            '../data',
            train=True,
            download=True,
            transform=transforms.Compose([
                transforms.ToTensor(),
                transforms.Normalize((0.1307, ), (0.3081, ))
            ])),
                                                        batch_size=Batch,
                                                        shuffle=True)

        self.test_loader = torch.utils.data.DataLoader(datasets.MNIST(
            '../data',
            train=False,
            transform=transforms.Compose([
                transforms.ToTensor(),
                transforms.Normalize((0.1307, ), (0.3081, ))
            ])),
                                                       batch_size=Batch,
                                                       shuffle=True)

        self.train_data_iter = iter(self.train_loader)
        self.test_data_iter = iter(self.test_loader)

        self.model = Net().cuda()
        self.optimizer = optim.SGD(self.model.parameters(), lr=Lr)
        self.criterion = nn.NLLLoss()

        self.AV['loss'].avgWidth = 10  # there's a default plotter for 'loss'
        self.add_accumulated_value(
            'accuracy', 10)  # second param is the number of average data
        self.add_accumulated_value('test')
        self.add_accumulated_value('test_accuracy')

        self.AVP.append(
            WorkFlow.VisdomLinePlotter("train_loss", self.AV, ['loss'],
                                       [False]))  # False: no average line
        self.AVP.append(
            WorkFlow.VisdomLinePlotter("test_loss", self.AV, ['test'],
                                       [False]))
        self.AVP.append(
            WorkFlow.VisdomLinePlotter("train_test_accuracy", self.AV,
                                       ['accuracy', 'test_accuracy'],
                                       [True, False]))
        self.AVP.append(
            WorkFlow.VisdomLinePlotter("train_test_loss", self.AV,
                                       ['loss', 'test'], [True, False]))
Exemplo n.º 9
0
    def __init__(self, workingDir, prefix="", suffix=""):
        super(MyWF, self).__init__(workingDir, prefix, suffix)

        # === Custom member variables. ===
        logstr = ''
        for param in LogParamList:  # record useful params in logfile
            logstr += param + ': ' + str(globals()[param]) + ', '
        self.logger.info(logstr)

        self.countEpoch = 0
        self.unlabelEpoch = 0
        self.countTrain = 0
        self.device = 'cuda'
        global TestBatch

        # Dataloader for the training and testing
        labeldataset = LabelDataset(balence=True, mean=mean, std=std)
        unlabeldataset = UnlabelDataset(batch=UnlabelBatch,
                                        balence=True,
                                        mean=mean,
                                        std=std)
        self.train_loader = DataLoader(labeldataset,
                                       batch_size=Batch,
                                       shuffle=True,
                                       num_workers=6)
        self.train_unlabel_loader = DataLoader(unlabeldataset,
                                               batch_size=1,
                                               shuffle=True,
                                               num_workers=4)

        if TestType == 1 or TestType == 0:
            testdataset = DukeSeqLabelDataset(labelfile=testlabelfile,
                                              batch=UnlabelBatch,
                                              data_aug=True,
                                              mean=mean,
                                              std=std)
            TestBatch = 1
        elif TestType == 2:
            testdataset = FolderLabelDataset(
                imgdir='/home/wenshan/headingdata/val_drone',
                data_aug=False,
                mean=mean,
                std=std)
        elif TestType == 3:
            testdataset = FolderUnlabelDataset(
                imgdir='/datadrive/exp_bags/20180811_gascola',
                data_aug=False,
                include_all=True,
                mean=mean,
                std=std)
            TestBatch = 1
        self.test_loader = torch.utils.data.DataLoader(testdataset,
                                                       batch_size=TestBatch,
                                                       shuffle=True,
                                                       num_workers=1)

        self.train_data_iter = iter(self.train_loader)
        self.train_unlabeld_iter = iter(self.train_unlabel_loader)
        self.test_data_iter = iter(self.test_loader)

        self.model = MobileReg()
        if LoadPreMobile:
            self.model.load_pretrained_pth(pre_mobile_model)
        if LoadPreTrain:
            loadPretrain(self.model, pre_model)
        self.optimizer = optim.Adam(self.model.parameters(), lr=Lr)
        self.criterion = nn.MSELoss()

        self.AV['loss'].avgWidth = 100  # there's a default plotter for 'loss'
        self.add_accumulated_value(
            'label_loss', 100)  # second param is the number of average data
        self.add_accumulated_value('unlabel_loss', 100)
        self.add_accumulated_value('test_loss', 10)
        self.add_accumulated_value('test_label', 10)
        self.add_accumulated_value('test_unlabel', 10)

        self.AVP.append(
            WorkFlow.VisdomLinePlotter("total_loss", self.AV,
                                       ['loss', 'test_loss'], [True, True]))
        self.AVP.append(
            WorkFlow.VisdomLinePlotter("label_loss", self.AV,
                                       ['label_loss', 'test_label'],
                                       [True, True]))
        self.AVP.append(
            WorkFlow.VisdomLinePlotter("unlabel_loss", self.AV,
                                       ['unlabel_loss', 'test_unlabel'],
                                       [True, True]))