Exemplo n.º 1
0
def test_all_schedulers():
    for scheduler in (ThreadedScheduler(max_threads=8), LinearizedScheduler(),
                      NaiveScheduler()):
        for wf_scheduler in (ThreadedScheduler(max_threads=8),
                             LinearizedScheduler(), NaiveScheduler()):
            for case in (_call_workflow, _run_workflow, _test_workflow_chain):
                yield case, scheduler, wf_scheduler
Exemplo n.º 2
0
def test_map_linear():
    ra = FuncActor(range)
    func = math.sin
    map_act = Map(FuncActor, args=(func, ))
    map_act.inports['inp'] += ra.outports['out']

    wf = ra.get_workflow()
    sch = LinearizedScheduler()

    inp = 5
    sch.run_workflow(wf, inp=inp)
    result = wf.outports.out.pop_all()
    assert len(result) == 1
    assert all((a, b) for a, b in zip_longest(result[0], map(func, range(inp))))
Exemplo n.º 3
0
def test_map_run():
    func = lambda x: x * 2
    inp = range(5)
    map_act = Map(FuncActor, args=(func, ), kwargs={'inports': ('inp', )}, scheduler=LinearizedScheduler())
    map_act.inports.inp.put(inp)
    result = map_act.run()
    assert all(a == b for a, b in zip_longest(result['out'], map(func, inp)))
Exemplo n.º 4
0
def test_map_multiport():
    actor_class = ConstructorWrapper(FuncActor, swap, inports=('a', 'b'), outports=('a', 'b'))
    amap = Map(actor_class, scheduler=LinearizedScheduler())

    inputs = dict(a=[1, 2], b=[10, 20])
    res = amap(**inputs)
    print(res)
    assert_sequence_equal(res['a'], inputs['b'])
Exemplo n.º 5
0
def test_map_shell():
    from wowp.actors import ShellRunner
    cmd = "echo {number}"

    sch = LinearizedScheduler()
    map_actor = Map(ShellRunner,
                    args=(cmd, ),
                    kwargs=dict(shell=True,
                                format_inp='kwargs',
                                single_out=True),
                    scheduler=sch)
    # TODO Map needs a single output
    # possible solution -> specify output (and input) port for Map
    n = 5
    inp = [{'number': i} for i in range(n)]
    res = map_actor(inp=inp)
    assert all((a == b
                for a, b in zip(
                    (int(d['stdout'].strip()) for d in res['out']), range(n))))
Exemplo n.º 6
0
def test_LinearizedScheduler_loop1000():
    def condition(x):
        return x < 1000

    def func(x):
        return x + 1

    scheduler = LinearizedScheduler()

    fa = FuncActor(func, outports=('x', ))
    lw = LoopWhile("a_loop", condition)

    fa.inports['x'] += lw.outports['loop']
    lw.inports['loop'] += fa.outports['x']

    scheduler.put_value(lw.inports['init'], 0)
    scheduler.execute()

    result = lw.outports['exit'].pop()
    assert (result == 1000)
Exemplo n.º 7
0
        for i in range(max_):
            scheduler.put_value(orig_actor.inports["x"], i)

        scheduler.execute()
        new_sequence = list(new_actor.outports['x'].pop_all())

        try:
            assert new_sequence == original_sequence
        except AssertionError:
            print("Received: ", new_sequence)
            print("Expected: ", original_sequence)
            raise


if __name__ == '__main__':
    # TODO use pytest + fixtures (get inspired by ipyparallel tests)
    tests = (
        _run_tree_512_test,
        lambda scheduler: _run_linearity_test(scheduler, size=100, ntimes=5),
    )
    logger.level = 20
    for case in (tests):
        print('testing {}'.format(case))
        for scheduler in (LinearizedScheduler(),
                          FuturesScheduler('distributed'),
                          FuturesScheduler('ipyparallel', timeout=1),
                          ):
            # FuturesScheduler('multiprocessing'), ):
            print('using {}'.format(type(scheduler)))
            case(scheduler)
Exemplo n.º 8
0
def test_all_schedulers():
    for scheduler in (ThreadedScheduler(max_threads=8), LinearizedScheduler()):
        for case in (_run_tree_512_test, _run_linearity_test):
            yield case, scheduler