Exemplo n.º 1
0
class MyRobot(wpilib.TimedRobot):
	def robotInit(self):
		self.driveMotor = rev.CANSparkMax(1, rev.MotorType.kBrushless)
		self.turnMotor = rev.CANSparkMax(4, rev.MotorType.kBrushless)
		self.turnEncoder = self.turnMotor.getEncoder()
		self.turnEncoder.setPositionConversionFactor(20)

		# PID coefficients
		self.kP = 5e-5
		self.kI = 1e-6
		self.kD = 0
		self.kIz = 0
		self.PIDTolerance = 0

		#PID controllers for the turn motors
		self.turnController = PIDController(self.kP, self.kI, self.kD)
		self.turnController.setTolerance(self.PIDTolerance)
		self.turnController.enableContinuousInput(0, 360)
		
		self.joystick = wpilib.Joystick(0)
		self.joystickDeadband = .05
		self.timer = wpilib.Timer() #used to use it while testing stuff, don't need it now, but oh well
		
		# Push PID Coefficients to SmartDashboard
		wpilib.SmartDashboard.putNumber("P Gain", self.kP)
		wpilib.SmartDashboard.putNumber("I Gain", self.kI)
		wpilib.SmartDashboard.putNumber("D Gain", self.kD)
		wpilib.SmartDashboard.putNumber("I Zone", self.kIz)
		wpilib.SmartDashboard.putNumber("Set Rotations", 0)
		wpilib.SmartDashboard.putNumber("Tolerance", self.PIDTolerance)
		wpilib.SmartDashboard.putBoolean("Manual Control", False)
		wpilib.SmartDashboard.putBoolean("Manual Speed", 0)
	def encoderBoundedPosition(self, encoder):
		#I don't know if there's a set continuous for encoders, but it's easy enough to write
		position = encoder.getPosition()
		position %= 360
		if position < 0:
			position += 360
		return position
	def brakeMode(self):
		self.driveMotor.setIdleMode(rev.IdleMode.kBrake)
		self.turnMotor.setIdleMode(rev.IdleMode.kBrake)
	def coastMode(self):
		self.driveMotor.setIdleMode(rev.IdleMode.kCoast)
		self.turnMotor.setIdleMode(rev.IdleMode.kCoast)
	def turnSpeedCalculator(self):
		speed = self.turnController.calculate(self.encoderBoundedPosition(self.turnEncoder))
		if abs(speed) > 1:
			speed /= abs(speed)
		return speed
	def autonomousInit(self):
		self.brakeMode()
	def autonomousPeriodic(self):
		pass
	def teleopInit(self):
		self.brakeMode()
	def teleopPeriodic(self):
		# Read data from SmartDashboard
		p = wpilib.SmartDashboard.getNumber("P Gain", self.kP)
		i = wpilib.SmartDashboard.getNumber("I Gain", self.kI)
		d = wpilib.SmartDashboard.getNumber("D Gain", self.kD)
		iz = wpilib.SmartDashboard.getNumber("I Zone", self.kIz)
		tolerance = wpilib.SmartDashboard.getNumber("Tolerance", self.PIDTolerance)
		test = wpilib.SmartDashboard.getBoolean("Manual Control", False)
		controlSpeed = wpilib.SmartDashboard.getNumber("Manual Speed", 0)

		# Update PIDController datapoints with the latest from SmartDashboard
		if p != self.kP:
			self.turnController.setP(p)
			self.kP = p
		if i != self.kI:
			self.turnController.setI(i)
			self.kI = i
		if d != self.kD:
			self.turnController.setD(d)
			self.kD = d
		if tolerance != self.PIDTolerance:
			self.turnController.setTolerance(tolerance)
			self.PIDTolerance = tolerance

		speed = self.turnSpeedCalculator()

		wpilib.SmartDashboard.putNumber("Process Variable", self.encoderBoundedPosition(self.turnEncoder))
		setpoint = wpilib.SmartDashboard.getNumber("Set Rotations", 0)
		self.turnController.setSetpoint(setpoint)
		wpilib.SmartDashboard.putNumber("Motor Input", speed)
		if test:
			self.turnMotor.set(controlSpeed)
		else:
			self.turnMotor.set(speed)
	def disabledInit(self):
		self.coastMode()
Exemplo n.º 2
0
class SwerveChassis:
    WIDTH = 0.75
    LENGTH = 0.75

    imu: NavX
    module_a: SwerveModule
    module_b: SwerveModule
    module_c: SwerveModule
    module_d: SwerveModule

    # tunables here purely for debugging
    odometry_x = tunable(0)
    odometry_y = tunable(0)
    # odometry_x_vel = tunable(0)
    # odometry_y_vel = tunable(0)
    # odometry_z_vel = tunable(0)

    hold_heading = tunable(True)

    def __init__(self):
        self.vx = 0
        self.vy = 0
        self.vz = 0
        self.field_oriented = False
        self.momentum = False
        self.automation_running = False

    def setup(self):
        # Heading PID controller
        self.heading_pid = PIDController(
            Kp=6.0,
            Ki=0.0,
            Kd=0.05,
            measurement_source=self.imu.getAngle,
            period=1 / 50)  # this gain is being changed depending on speed
        self.heading_pid.setInputRange(-math.pi, math.pi)
        self.heading_pid.setOutputRange(-3, 3)
        self.heading_pid.setContinuous()
        self.modules = [
            self.module_a, self.module_b, self.module_c, self.module_d
        ]

        self.odometry_x = 0
        self.odometry_y = 0
        self.odometry_x_vel = 0
        self.odometry_y_vel = 0
        self.odometry_z_vel = 0

        self.A = np.array(
            [
                [1, 0, 1],
                [0, 1, 1],
                [1, 0, 1],
                [0, 1, 1],
                [1, 0, 1],
                [0, 1, 1],
                [1, 0, 1],
                [0, 1, 1],
            ],
            dtype=float,
        )

        self.last_odometry_time = 0
        # wpilib.SmartDashboard.putData("heading_pid", self.heading_pid)

        # figure out the contribution of the robot's overall rotation about the
        # z axis to each module's movement, and encode that information in a

        for i, module in enumerate(self.modules):
            module_dist = math.hypot(module.x_pos, module.y_pos)
            module_angle = math.atan2(module.y_pos, module.x_pos)
            # self.z_axis_adjustment[i*2, 0] = -module_dist*math.sin(module_angle)
            # self.z_axis_adjustment[i*2+1, 0] = module_dist*math.cos(module_angle)
            self.A[i * 2, 2] = -module_dist * math.sin(module_angle)
            self.A[i * 2 + 1, 2] = module_dist * math.cos(module_angle)

    def set_heading_sp_current(self):
        self.set_heading_sp(self.imu.getAngle())

    def set_heading_sp(self, setpoint):
        self.heading_pid.setReference(setpoint)

    def heading_hold_on(self):
        self.set_heading_sp_current()
        self.heading_pid.reset()
        self.hold_heading = True

    def heading_hold_off(self):
        self.hold_heading = False

    def on_enable(self):
        self.heading_hold_on()

        self.last_heading = self.imu.getAngle()
        self.odometry_updated = False
        for module in self.modules:
            module.reset_encoder_delta()

        self.last_odometry_time = time.monotonic()

    def execute(self):

        pid_z = 0
        if self.hold_heading:
            pid_z = self.heading_pid.update()
            if self.momentum and abs(self.imu.getHeadingRate()) < 0.005:
                self.momentum = False

            if self.vz not in [0.0, None]:
                self.momentum = True

            if self.momentum:
                self.set_heading_sp_current()
                pid_z = 0

        input_vz = 0
        if self.vz is not None:
            input_vz = self.vz
        if abs(pid_z) < 0.1 and math.hypot(self.vx, self.vy) < 0.01:
            pid_z = 0
        vz = input_vz + pid_z

        angle = self.imu.getAngle()

        # TODO: re-enable if we end up not using callback method
        self.update_odometry()
        # self.odometry_updated = False  # reset for next timestep

        for module in self.modules:
            # Calculate the additional vx and vy components for this module
            # required to achieve our desired angular velocity
            vz_x = -module.dist * vz * math.sin(module.angle)
            vz_y = module.dist * vz * math.cos(module.angle)
            if self.field_oriented:
                vx, vy = self.robot_orient(self.vx, self.vy, angle)
            else:
                vx, vy = self.vx, self.vy
            module.set_velocity(vx + vz_x, vy + vz_y, absolute_rotation=False)

        if abs(math.hypot(self.vx, self.vy)) > 0.5:
            self.heading_pid.setP(2.0)
        else:
            self.heading_pid.setP(6.0)

    def update_odometry(self, *args):
        # TODO: re-enable if we end up not using callback method
        # if self.odometry_updated:
        #     return
        heading = self.imu.getAngle()

        odometry_outputs = np.zeros((8, 1))
        velocity_outputs = np.zeros((8, 1))

        # betas = []
        # phi_dots = []
        for i, module in enumerate(self.modules):
            module.update_odometry()
            odometry_x, odometry_y = module.get_cartesian_delta()
            velocity_x, velocity_y = module.get_cartesian_vel()
            odometry_outputs[i * 2, 0] = odometry_x
            odometry_outputs[i * 2 + 1, 0] = odometry_y
            velocity_outputs[i * 2, 0] = velocity_x
            velocity_outputs[i * 2 + 1, 0] = velocity_y
            module.reset_encoder_delta()
            # betas.append(module.measured_azimuth)
            # phi_dots.append(module.wheel_angular_vel)

        # q = np.array(betas)
        # lambda_e = self.icre.estimate_lmda(q)
        # print(lambda_e)

        now = time.monotonic()
        vx, vy, vz = self.robot_movement_from_odometry(velocity_outputs,
                                                       heading)
        # delta_x, delta_y, delta_z = self.robot_movement_from_odometry(
        # odometry_outputs, heading, z_vel=self.imu.getHeadingRate()
        # )

        delta_t = now - self.last_odometry_time
        delta_x = vx * delta_t
        delta_y = vy * delta_t

        self.odometry_x += delta_x
        self.odometry_y += delta_y
        self.odometry_x_vel = vx
        self.odometry_y_vel = vy
        self.odometry_z_vel = vz

        self.last_heading = heading

        self.odometry_updated = True

        self.set_modules_drive_brake()

        self.last_odometry_time = now

    def robot_movement_from_odometry(self, odometry_outputs, angle, z_vel=0):
        lstsq_ret = np.linalg.lstsq(self.A, odometry_outputs, rcond=None)
        x, y, theta = lstsq_ret[0].reshape(3)
        # TODO: re-enable if we move back to running in the same thread
        x_field, y_field = self.field_orient(x, y, angle + z_vel * (1 / 200))
        # x_field, y_field = self.field_orient(x, y, angle)
        return x_field, y_field, theta

    def set_velocity_heading(self, vx, vy, heading):
        """Set a translational velocity and a rotational orientation to achieve.

        Args:
            vx: (forward) component of the robot's desired velocity. In m/s.
            vy: (leftward) component of the robot's desired velocity. In m/s.
            heading: the heading the robot is to face.
        """
        self.vx = vx
        self.vy = vy
        self.vz = None
        self.set_heading_sp(heading)

    def set_inputs(self,
                   vx: float,
                   vy: float,
                   vz: float,
                   *,
                   field_oriented: bool = True):
        """Set chassis vx, vy, and vz components of inputs.
        Args:
            vx: (forward) component of the robot's desired velocity. In m/s.
            vy: (leftward) component of the robot's desired velocity. In m/s.
            vz: The vz (counter-clockwise rotation) component of the robot's
                desired [angular] velocity. In radians/s.
            field_oriented: Whether the inputs are field or robot oriented.
        """
        self.vx = vx
        self.vy = vy
        self.vz = vz
        self.field_oriented = field_oriented

    @staticmethod
    def robot_orient(vx: float, vy: float,
                     heading: float) -> Tuple[float, float]:
        """Turn a vx and vy relative to the field into a vx and vy based on the
        robot.

        Args:
            vx: vx to robot orient
            vy: vy to robot orient
            heading: current heading of the robot in radians CCW from +x axis.

        Returns:
            tuple of robot oriented vx and vy
        """
        c_h = math.cos(heading)
        s_h = math.sin(heading)
        oriented_vx = vx * c_h + vy * s_h
        oriented_vy = -vx * s_h + vy * c_h
        return oriented_vx, oriented_vy

    @staticmethod
    def field_orient(vx: float, vy: float,
                     heading: float) -> Tuple[float, float]:
        """Turn a vx and vy relative to the robot into a vx and vy based on the
        field.

        Args:
            vx: vx to field orient
            vy: vy to field orient
            heading: current heading of the robot in radians CCW from +x axis.

        Returns:
            tuple of field oriented vx and vy
        """
        c_h = math.cos(heading)
        s_h = math.sin(heading)
        oriented_vx = vx * c_h - vy * s_h
        oriented_vy = vx * s_h + vy * c_h
        return oriented_vx, oriented_vy

    @property
    def position(self):
        return self.odometry_x, self.odometry_y

    @property
    def speed(self):
        return math.hypot(self.odometry_x_vel, self.odometry_y_vel)

    @property
    def all_aligned(self):
        return all(module.aligned for module in self.modules)

    def set_modules_drive_coast(self):
        for module in self.modules:
            module.set_drive_coast()

    def set_modules_drive_brake(self):
        for module in self.modules:
            module.set_drive_brake()