Exemplo n.º 1
0
    def rxnday_func(self, ci, num_days, freq, center_mean_on_last_day):
        climdex = get_package("climdex.pcic")

        if num_days == 1:
            return climdex.climdex_rx1day(ci, freq)

        elif num_days == 5:
            return climdex.climdex_rx5day(ci, freq, center_mean_on_last_day)
Exemplo n.º 2
0
    def threshold_func(self, threshold, ci):
        climdex = get_package("climdex.pcic")

        if threshold == 10.0:
            return climdex.climdex_r10mm(ci)
        if threshold == 20.0:
            return climdex.climdex_r20mm(ci)
        else:
            return climdex.climdex_rnnmm(ci, threshold)
Exemplo n.º 3
0
    def _handler(self, request, response):
        (
            base_range,
            cal,
            date_fields,
            date_format,
            loglevel,
            max_missing_days,
            min_base_data_fraction_present,
            n,
            northern_hemisphere,
            output_file,
            prec_column,
            prec_file,
            prec_name,
            prec_qtiles,
            quantiles,
            tavg_column,
            tavg_file,
            tavg_name,
            temp_qtiles,
            tmax_column,
            tmax_file,
            tmax_name,
            tmin_column,
            tmin_file,
            tmin_name,
            vector_name,
        ) = process_inputs_alpha(request.inputs, raw_inputs, self.workdir)

        validate_vectors([
            base_range,
            date_fields,
            temp_qtiles,
            prec_qtiles,
            max_missing_days,
        ])

        log_handler(
            self,
            response,
            "Starting Process",
            logger,
            log_level=loglevel,
            process_step="start",
        )
        climdex = get_package("climdex.pcic")
        robjects.r("library(PCICt)")

        log_handler(
            self,
            response,
            "Prepare parameters for climdexInput.raw",
            logger,
            log_level=loglevel,
            process_step="prepare_params",
        )
        params = self.prepare_parameters(
            request,
            tmax_name,
            tmin_name,
            prec_name,
            tavg_name,
            tmax_column,
            tmin_column,
            prec_column,
            tavg_column,
            date_fields,
            date_format,
            cal,
            prec_file,
            tavg_file,
            tmax_file,
            tmin_file,
        )

        log_handler(
            self,
            response,
            "Processing climdexInput.raw",
            logger,
            log_level=loglevel,
            process_step="process",
        )

        try:
            ci = climdex.climdexInput_raw(
                **params,
                base_range=robjects.r(base_range),
                n=n,
                northern_hemisphere=northern_hemisphere,
                quantiles=robjects.r(quantiles),
                temp_qtiles=robjects.r(temp_qtiles),
                prec_qtiles=robjects.r(prec_qtiles),
                max_missing_days=robjects.r(max_missing_days),
                min_base_data_fraction_present=min_base_data_fraction_present,
            )
        except RRuntimeError as e:
            raise ProcessError(msg=f"{type(e).__name__}: {str(e)}")

        log_handler(
            self,
            response,
            "Saving climdexInput as R data file",
            logger,
            log_level=loglevel,
            process_step="save_rdata",
        )
        output_path = os.path.join(self.workdir, output_file)
        r_valid_name(vector_name)
        save_python_to_rdata(vector_name, ci, output_path)

        log_handler(
            self,
            response,
            "Building final output",
            logger,
            log_level=loglevel,
            process_step="build_output",
        )
        response.outputs["climdexInput"].file = output_path

        # Clear R global env
        robjects.r("rm(list=ls())")

        return response
Exemplo n.º 4
0
    def _handler(self, request, response):
        climdex_input, freq, loglevel, month_type, output_file = process_inputs_alpha(
            request.inputs, mmdmt_inputs, self.workdir)

        log_handler(
            self,
            response,
            "Starting Process",
            logger,
            log_level=loglevel,
            process_step="start",
        )
        climdex = get_package("climdex.pcic")
        vectors = []

        counter = 1
        total = len(climdex_input)

        for input in climdex_input:
            log_handler(
                self,
                response,
                f"Loading climdexInput from R data file {counter}/{total}",
                logger,
                log_level=loglevel,
                process_step="load_rdata",
            )
            cis = load_cis(input)

            log_handler(
                self,
                response,
                f"Processing {month_type} for file {counter}/{total}",
                logger,
                log_level=loglevel,
                process_step="process",
            )

            for ci_name, ci in cis.items():
                try:
                    robjects.r.assign("ci", ci)
                    temps = robjects.r(
                        f"climdex.{month_type}(ci, freq='{freq}')")
                except RRuntimeError as e:
                    raise ProcessError(msg=f"{type(e).__name__}: {str(e)}")

                vector_name = f"{month_type}_{freq}{counter}_{ci_name}"
                robjects.r.assign(vector_name, temps)
                vectors.append(vector_name)
            counter += 1

        log_handler(
            self,
            response,
            f"Saving {month_type} vector to R data file",
            logger,
            log_level=loglevel,
            process_step="save_rdata",
        )
        output_path = os.path.join(self.workdir, output_file)
        robjects.r["save"](*vectors, file=output_path)

        log_handler(
            self,
            response,
            "Building final output",
            logger,
            log_level=loglevel,
            process_step="build_output",
        )
        response.outputs["rda_output"].file = output_path

        # Clear R global env
        robjects.r("rm(list=ls())")

        log_handler(
            self,
            response,
            "Process Complete",
            logger,
            log_level=loglevel,
            process_step="complete",
        )
        return response
Exemplo n.º 5
0
    def _handler(self, request, response):
        ci_name, climdex_single_input, loglevel, output_file = process_inputs_alpha(
            request.inputs, avail_indices_inputs, self.workdir)

        log_handler(
            self,
            response,
            "Starting Process",
            logger,
            log_level=loglevel,
            process_step="start",
        )
        climdex = get_package("climdex.pcic")

        log_handler(
            self,
            response,
            "Loading climdexInput from R data file",
            logger,
            log_level=loglevel,
            process_step="load_rdata",
        )
        ci = get_robj(climdex_single_input, ci_name)

        log_handler(
            self,
            response,
            "Processing climdex_get_available_indices",
            logger,
            log_level=loglevel,
            process_step="process",
        )

        try:
            robjects.r.assign("ci", ci)
            avail_indices = climdex.climdex_get_available_indices(ci, False)
        except RRuntimeError as e:
            raise ProcessError(msg=f"{type(e).__name__}: {str(e)}")

        avail_processes = self.available_processes(avail_indices)

        log_handler(
            self,
            response,
            "Building final output",
            logger,
            log_level=loglevel,
            process_step="build_output",
        )
        response.outputs["avail_processes"].data = avail_processes

        # Clear R global env
        robjects.r("rm(list=ls())")

        log_handler(
            self,
            response,
            "Process Complete",
            logger,
            log_level=loglevel,
            process_step="complete",
        )
        return response
Exemplo n.º 6
0
def test_get_package_err(package):
    with pytest.raises(ProcessError) as e:
        get_package(package)
        assert str(vars(e)["_excinfo"][1]) == f"R package, {package}, is not installed"
Exemplo n.º 7
0
def test_get_package(package):
    pkg = get_package(package)
    assert pkg.__dict__["__rname__"] == package
Exemplo n.º 8
0
    def _handler(self, request, response):
        (
            data_file,
            data_vector,
            loglevel,
            output_file,
            quantiles_vector,
            vector_name,
        ) = process_inputs_alpha(request.inputs, quantile_inputs, self.workdir)
        validate_vectors([quantiles_vector])
        r_valid_name(vector_name)

        log_handler(
            self,
            response,
            "Starting Process",
            logger,
            log_level=loglevel,
            process_step="start",
        )
        climdex = get_package("climdex.pcic")

        log_handler(
            self,
            response,
            "Loading R data file",
            logger,
            log_level=loglevel,
            process_step="load_rdata",
        )

        if data_file:
            data = self.unpack_data_file(data_file, data_vector)
        else:
            data = robjects.r(data_vector)

        log_handler(
            self,
            response,
            "Processing climdex.quantile",
            logger,
            log_level=loglevel,
            process_step="process",
        )

        try:
            quantiles = robjects.r(quantiles_vector)
            quantile_vector = climdex.climdex_quantile(data, quantiles)
        except RRuntimeError as e:
            raise ProcessError(msg=f"{type(e).__name__}: {str(e)}")

        log_handler(
            self,
            response,
            "Saving quantile as R data file",
            logger,
            log_level=loglevel,
            process_step="save_rdata",
        )
        output_path = os.path.join(self.workdir, output_file)
        save_python_to_rdata(vector_name, quantile_vector, output_path)

        log_handler(
            self,
            response,
            "Building final output",
            logger,
            log_level=loglevel,
            process_step="build_output",
        )
        response.outputs["rda_output"].file = output_path
        response.outputs["output_vector"].data = str(quantile_vector)

        # Clear R global env
        robjects.r("rm(list=ls())")

        log_handler(
            self,
            response,
            "Process Complete",
            logger,
            log_level=loglevel,
            process_step="complete",
        )
        return response
Exemplo n.º 9
0
    def _handler(self, request, response):
        climdex_input, loglevel, output_file, threshold = process_inputs_alpha(
            request.inputs, rmm_inputs, self.workdir)

        log_handler(
            self,
            response,
            "Starting Process",
            logger,
            log_level=loglevel,
            process_step="start",
        )
        climdex = get_package("climdex.pcic")
        vectors = []

        counter = 1
        total = len(climdex_input)

        for input in climdex_input:
            log_handler(
                self,
                response,
                f"Loading climdexInput from R data file {counter}/{total}",
                logger,
                log_level=loglevel,
                process_step="load_rdata",
            )
            cis = load_cis(input)

            log_handler(
                self,
                response,
                f"Processing the annual count of days where daily precipitation is more than {threshold}mm per day for file {counter}/{total}",
                logger,
                log_level=loglevel,
                process_step="process",
            )

            for ci_name, ci in cis.items():
                try:
                    robjects.r.assign("ci", ci)
                    count_days = self.threshold_func(threshold, ci)
                except RRuntimeError as e:
                    raise ProcessError(msg=f"{type(e).__name__}: {str(e)}")

                vector_name = f"r{threshold}mm{counter}_{ci_name}"
                robjects.r.assign(vector_name, count_days)
                vectors.append(vector_name)
            counter += 1

        log_handler(
            self,
            response,
            f"Saving climdex.r{threshold}mm outputs to R data file",
            logger,
            log_level=loglevel,
            process_step="save_rdata",
        )
        output_path = os.path.join(self.workdir, output_file)
        robjects.r["save"](*vectors, file=output_path)

        log_handler(
            self,
            response,
            "Building final output",
            logger,
            log_level=loglevel,
            process_step="build_output",
        )
        response.outputs["rda_output"].file = output_path

        # Clear R global env
        robjects.r("rm(list=ls())")

        log_handler(
            self,
            response,
            "Process Complete",
            logger,
            log_level=loglevel,
            process_step="complete",
        )
        return response