def fn(pipe): p = pipe \ .split(5) \ .pipe(kmeans(clusters)) \ .y(seeding_centroids(0.1)) \ .y(label_consensus()) \ .pipe(knn(neighbors)) \ .pipe(predict()) \ .pipe(evaluate()) \ .merge('evaluation', average('evaluation')) return p
def fn(pipe): p = pipe \ .split(5) \ .pipe(agglomerative_l_method()) \ .pipe(copy('y', 'y_bak')) \ .y(seeding_random(0.1)) \ .y(label_consensus()) \ .pipe(knn(neighbors)) \ .pipe(predict()) \ .pipe(copy('y_bak', 'y')) \ .pipe(evaluate()) \ .merge('evaluation', average('evaluation')) return p
from pipe import Pipe from wrapper import knn from pipetools import predict, dump, load_y, copy, evaluate, echo from utils import load_x, load_y from multipipetools import average from splitter import cross file = './datasets/iris/iris.data' a = Pipe() \ .x(load_x(file)) \ .y(load_y(file))\ .split(5, cross()) \ .pipe(knn(1)) \ .pipe(copy('x_test', 'x')) \ .pipe(copy('y_test', 'y')) \ .pipe(predict()) \ .pipe(evaluate()) \ .merge('evaluation', average('evaluation'))\ .pipe(dump('evaluation'))