Exemplo n.º 1
0
def osoc_test(hyper_para):
    transformer = Transformer(8, 8)
    C = wrn.WideResNet(28, num_classes=10, dropout_rate=0,
                       widen_factor=10).cuda()
    C.load_state_dict(torch.load(hyper_para.experiment_name + '.pth'))
    single_class_ind = hyper_para.inclass[0]
    (x_train, y_train), (x_test, y_test) = load_cifar10()
    C.eval()
    score = []
    lbl = []
    features = []
    correct = 0
    total = 0
    dset = CustomDataset(x_test, y_test)
    testLoader = DataLoader(dset, batch_size=128)
    for i, (inputs0, labels) in enumerate(testLoader):
        inputs = inputs0.permute(0, 3, 2, 1)
        if hyper_para.gpu:
            inputs = inputs.cuda()
            labels = labels.cuda()
        act, f = C(inputs)
        features += f.detach().cpu().tolist()
        val, ind = torch.max(act, dim=1)
        #score += val.detach().cpu().tolist()
        CC = wrn.WideResNet(28,
                            num_classes=72,
                            dropout_rate=0,
                            widen_factor=10).cuda()
        val, ind, labels = (val.detach().cpu().tolist(),
                            ind.detach().cpu().tolist(),
                            labels.detach().cpu().tolist())
        for ind, (ii, gt) in enumerate(zip(ind, labels)):
            gt = gt[0]
            CC.load_state_dict(
                torch.load('saved/' + hyper_para.experiment_name + '_' +
                           str(gt) + '.pth'))

            x_test0 = transformer.transform_batch(
                np.expand_dims(inputs0[ind, :, :, :].detach().cpu().numpy(),
                               0), [0])
            x_test0 = torch.tensor(x_test0).permute(0, 3, 2, 1).cuda()
            act, f = CC(x_test0)
            act = act.detach().cpu().tolist()
            score += [act[0][0]]

            if gt in hyper_para.inclass:
                total += 1
                if ii == gt:
                    correct += 1
                lbl.append(1)
            else:
                lbl.append(0)
        break
    fpr, tpr, thresholds = metrics.roc_curve(lbl, score)
    AUC = metrics.auc(fpr, tpr)
    ACC = float(correct) / total
    print('AUROC: ' + str(AUC) + '\t Accuracy: ' + str(ACC))
Exemplo n.º 2
0
def os_test_ens(testLoader, hyper_para, C, isauc):
    C = wrn.WideResNet(28, num_classes=72, dropout_rate=0,
                       widen_factor=10).cuda()
    C.load_state_dict(
        torch.load('saved/' + hyper_para.experiment_name + '_' +
                   str(hyper_para.inclass[0]) + '.pth'))
    single_class_ind = hyper_para.inclass[0]
    (x_train, y_train), (x_test, y_test) = load_cifar10()
    transformer = Transformer(8, 8)
    glabels = y_test.flatten() == single_class_ind
    C.cuda().eval()
    scores = np.array([[]])
    features = []

    correct = 0
    total = 0
    preds = np.zeros((len(x_test), transformer.n_transforms))
    for t in [0]:  #range(72):
        score = []
        x_test0 = transformer.transform_batch(x_test, [t] * len(x_test))
        dset = CustomDataset(x_test0, [t] * len(x_test))
        testLoader = DataLoader(dset, batch_size=128, shuffle=False)
        for i, (inputs, labels) in enumerate(testLoader):
            inputs = inputs.permute(0, 3, 2, 1)
            if True:
                inputs = inputs.cuda()
                labels = labels.cuda()
            act, f = C(inputs)
            features += f.detach().cpu().tolist()
            #act = torch.nn.functional.softmax(act, dim=1)
            score += act[:, t].detach().cpu().tolist()
        preds[:, t] = list(score)
        fpr, tpr, thresholds = metrics.roc_curve(glabels, score)
        AUC = metrics.auc(fpr, tpr)
        print('AUROC: ' + str(AUC))

    scores = np.sum(((preds)), 1)
    fpr, tpr, thresholds = metrics.roc_curve(glabels, scores)
    AUC = metrics.auc(fpr, tpr)
    print('AUROC: ' + str(AUC))
    return ([0, 0])
Exemplo n.º 3
0
def os_test(hyper_para):
    C = wrn.WideResNet(28, num_classes=10, dropout_rate=0,
                       widen_factor=10).cuda()
    C.load_state_dict(torch.load(hyper_para.experiment_name + '.pth'))
    single_class_ind = hyper_para.inclass[0]
    (x_train, y_train), (x_test, y_test) = load_cifar10()
    C.eval()
    score = []
    lbl = []
    features = []
    correct = 0
    total = 0
    dset = CustomDataset(x_test, y_test)
    testLoader = DataLoader(dset, batch_size=128)
    for i, (inputs, labels) in enumerate(testLoader):
        inputs = inputs.permute(0, 3, 2, 1)
        if hyper_para.gpu:
            inputs = inputs.cuda()
            labels = labels.cuda()
        act, f = C(inputs)
        features += f.detach().cpu().tolist()
        val, ind = torch.max(act, dim=1)
        score += val.detach().cpu().tolist()
        val, ind, labels = (val.detach().cpu().tolist(),
                            ind.detach().cpu().tolist(),
                            labels.detach().cpu().tolist())
        for ii, gt in zip(ind, labels):
            gt = gt[0]
            if gt in hyper_para.inclass:
                total += 1
                if ii == gt:
                    correct += 1
                lbl.append(1)
            else:
                lbl.append(0)
    fpr, tpr, thresholds = metrics.roc_curve(lbl, score)
    AUC = metrics.auc(fpr, tpr)
    ACC = float(correct) / total
    print('AUROC: ' + str(AUC) + '\t Accuracy: ' + str(ACC))
Exemplo n.º 4
0
def octest0(hyper_para):
    C = wrn.WideResNet(28, num_classes=72, dropout_rate=0,
                       widen_factor=10).cuda()
    C.load_state_dict(
        torch.load(hyper_para.experiment_name + '_' +
                   str(hyper_para.inclass[0]) + '.pth'))
    single_class_ind = hyper_para.inclass[0]
    if hyper_para.source == 'mnist':
        (x_train, y_train), (x_test, y_test) = load_mnist()
    elif hyper_para.source == 'svhn':
        (x_train, y_train), (x_test, y_test) = load_svhn()
    elif hyper_para.source == 'amazon':
        (x_train, y_train), (x_test, y_test) = load_amazon()
    elif hyper_para.source == 'dslr':
        (x_train, y_train), (x_test, y_test) = load_dslr()
    transformer = Transformer(8, 8)

    glabels = y_test.flatten() == single_class_ind

    print(hyper_para.source)
    print(len(x_test))
    print(np.sum(glabels))
    C.cuda().eval()
    scores = np.array([[]])
    features = []

    correct = 0
    total = 0
    preds = np.zeros((len(x_test), transformer.n_transforms))
    for t in range(1):
        score = []

        dset = CustomDataset(x_test, y_test)
        testLoader = DataLoader(dset, batch_size=128, shuffle=False)
        transformer = Transformer(8, 8)

        for i, (inputs, labels) in enumerate(testLoader):
            inputs = torch.tensor(
                transformer.transform_batch(inputs.detach().cpu().numpy(),
                                            [t] * len(inputs)))
            inputs = inputs.permute(0, 3, 2, 1)
            if True:
                inputs = inputs.cuda()
                labels = labels.cuda()
            act, f = C(inputs)
            features += f.detach().cpu().tolist()
            #act = torch.nn.functional.softmax(act, dim=1)
            score += act[:, t].detach().cpu().tolist()
        preds[:, t] = list(score)
        fpr, tpr, thresholds = metrics.roc_curve(glabels, score)
        AUC = metrics.auc(fpr, tpr)
        #print('AUROC: ' + str(AUC) )

    scores = np.sum(((preds)), 1)
    fpr, tpr, thresholds = metrics.roc_curve(glabels, scores)
    AUC = metrics.auc(fpr, tpr)
    print('AUROC: ' + str(AUC))
    file1 = open("AUC.txt", "a")  #append mode
    file1.write(hyper_para.source + "\t" + hyper_para.method + "\t" +
                str(hyper_para.inclass[0]) + "\t" +
                hyper_para.experiment_name + "\t" + str(AUC) + "\n")
    file1.close()

    C = wrn.WideResNet(28, num_classes=72, dropout_rate=0,
                       widen_factor=10).cuda()
    C.load_state_dict(
        torch.load(hyper_para.experiment_name + '_' +
                   str(hyper_para.inclass[0]) + '.pth'))
    single_class_ind = hyper_para.inclass[0]
    if hyper_para.target == 'mnist':
        (x_train, y_train), (x_test, y_test) = load_mnist()
    elif hyper_para.target == 'svhn':
        (x_train, y_train), (x_test, y_test) = load_svhn()
    elif hyper_para.target == 'amazon':
        (x_train, y_train), (sx_test, y_test) = load_amazon()
    elif hyper_para.target == 'dslr':
        (x_train, y_train), (x_test, y_test) = load_dslr()
    transformer = Transformer(8, 8)

    C.cuda().eval()
    scores = np.array([[]])
    features = []

    correct = 0
    total = 0
    preds = np.zeros((len(x_test) + len(x_train), transformer.n_transforms))
    for t in range(1):
        score = []

        dset = CustomDataset(np.concatenate((x_test, x_train), 0),
                             np.concatenate((y_test, y_train), 0))
        testLoader = DataLoader(dset, batch_size=128, shuffle=False)
        transformer = Transformer(8, 8)

        for i, (inputs, labels) in enumerate(testLoader):
            inputs = torch.tensor(
                transformer.transform_batch(inputs.detach().cpu().numpy(),
                                            [t] * len(inputs)))
            inputs = inputs.permute(0, 3, 2, 1)
            if True:
                inputs = inputs.cuda()
                labels = labels.cuda()
            act, f = C(inputs)
            features += f.detach().cpu().tolist()
            #act = torch.nn.functional.softmax(act, dim=1)
            score += act[:, t].detach().cpu().tolist()
        preds[:, t] = list(score)
        #print('AUROC: ' + str(AUC) )
    glabels = (np.concatenate((y_test, y_train))).flatten() == single_class_ind

    scores = np.sum(((preds)), 1)
    fpr, tpr, thresholds = metrics.roc_curve(glabels, scores)
    AUC = metrics.auc(fpr, tpr)
    print('AUROC: ' + str(AUC))
    file1 = open("AUC.txt", "a")  #append mode
    file1.write(hyper_para.target + "\t" + hyper_para.method + "\t" +
                str(hyper_para.inclass[0]) + "\t" +
                hyper_para.experiment_name + "\t" + str(AUC) + "\n")
    file1.close()
Exemplo n.º 5
0
def oceval(hyper_para):
    import sklearn
    for single_class_ind in hyper_para.inclass:
        C = wrn.WideResNet(28, num_classes=72, dropout_rate=0, widen_factor=10)
        C.load_state_dict(
            torch.load(hyper_para.experiment_name + '_' +
                       str(hyper_para.inclass[0]) + '.pth'))
        C.cuda()
        if hyper_para.source == 'mnist':
            (x_train, y_train), (x_test, y_test) = load_mnist()
            (x_train2, y_train2), (x_test2, y_test2) = load_svhn()
        elif hyper_para.source == 'svhn':
            (x_train, y_train), (x_test, y_test) = load_svhn()
            (x_train2, y_train2), (x_test2, y_test2) = load_mnist()
        elif hyper_para.source == 'amazon':
            (x_train, y_train), (x_test, y_test) = load_amazon()
            (x_train2, y_train2), (x_test2, y_test2) = load_dslr()
        elif hyper_para.source == 'dslr':
            (x_train, y_train), (x_test, y_test) = load_dslr()
            (x_train2, y_train2), (x_test2, y_test2) = load_amazon()
        if hyper_para.method == 'justsource':
            x_train_task = x_train[y_train.flatten() == single_class_ind]

            x_test = x_train_task[int(len(x_train_task) * 0.8):]
            x_train_task = x_train_task[0:int(len(x_train_task) * 0.8)]
            domain_lbl = [0] * len(x_train_task)
            tst_lbl = [0] * len(x_test)
            dset2 = RotateDataset(x_test, tst_lbl)
            testLoader = DataLoader(dset2, batch_size=512, shuffle=True)

        else:  #if hyper_para.method == 'balancedsourcetarget':
            x_train_task = x_train[y_train.flatten() == single_class_ind]
            x_train_task2 = x_train2[y_train2.flatten() == single_class_ind]
            x_train_task2 = x_train_task2[0:hyper_para.target_n]

            x_test = x_train_task[int(len(x_train_task) * 0.8):]
            x_train_task = x_train_task[0:int(len(x_train_task) * 0.8)]
            x_test2 = x_train_task2[int(len(x_train_task2) * 0.8):]
            x_train_task2 = x_train_task2[0:int(len(x_train_task2) * 0.8)]

            domain_lbl = [0] * len(x_train_task) + [1] * (len(
                x_train_task2) * int(len(x_train_task) / len(x_train_task2)))
            x_train_task2 = np.tile(
                x_train_task2,
                (int(len(x_train_task) / len(x_train_task2)), 1, 1, 1))
            x_train_task = np.concatenate((x_train_task, x_train_task2))
            tst_lbl = [0] * len(x_test) + [1] * (
                len(x_test2) * int(len(x_test) / len(x_test2)))
            x_test2 = np.tile(x_test2,
                              (int(len(x_test) / len(x_test2)), 1, 1, 1))
            x_test = np.concatenate((x_test, x_test2))

            dset2 = RotateDataset(x_test, tst_lbl)
            testLoader = DataLoader(dset2, batch_size=512, shuffle=True)
            transformer = Transformer(8, 8)

        dset = RotateDataset(x_train_task, domain_lbl)
        trainLoader = DataLoader(dset, batch_size=512, shuffle=True)
    np.set_printoptions(threshold=sys.maxsize)
    correct = 0
    total = 0
    preds = []
    target = []
    for t in range(10):
        for i, (inputs, labels, dlbls) in enumerate(testLoader):
            inputs = inputs.permute(0, 3, 2, 1)
            if True:
                inputs = inputs.cuda()
                labels = labels.cuda()
            act, f = C(inputs)
            _, ind = torch.max(act, 1)
            target += labels.detach().cpu().tolist()
            preds += ind.detach().cpu().tolist()

    import matplotlib
    import matplotlib.pyplot as plt

    cm = sklearn.metrics.confusion_matrix(target, preds, normalize='true')
    #plt.imshow(cm)
    #plt.show()
    cm = np.diag(cm)
    cm = cm / np.sum(cm) * 72
    return cm
Exemplo n.º 6
0
def octrain(hyper_para):
    for single_class_ind in hyper_para.inclass:
        hyper_para.C = wrn.WideResNet(28,
                                      num_classes=72,
                                      dropout_rate=0,
                                      widen_factor=10)
        if hyper_para.source == 'mnist':
            (x_train, y_train), (x_test, y_test) = load_mnist()
            (x_train2, y_train2), (x_test2, y_test2) = load_svhn()
        elif hyper_para.source == 'svhn':
            (x_train, y_train), (x_test, y_test) = load_svhn()
            (x_train2, y_train2), (x_test2, y_test2) = load_mnist()
        elif hyper_para.source == 'amazon':
            (x_train, y_train), (x_test, y_test) = load_amazon()
            (x_train2, y_train2), (x_test2, y_test2) = load_dslr()
        elif hyper_para.source == 'dslr':
            (x_train, y_train), (x_test, y_test) = load_dslr()
            (x_train2, y_train2), (x_test2, y_test2) = load_amazon()
        if hyper_para.method == 'justsource':
            x_train_task = x_train[y_train.flatten() == single_class_ind]

            x_test = x_train_task[int(len(x_train_task) * 0.8):]
            x_train_task = x_train_task[0:int(len(x_train_task) * 0.8)]
            domain_lbl = [0] * len(x_train_task)
            tst_lbl = [0] * len(x_test)
            dset2 = RotateDataset(x_test, tst_lbl)
            testLoader = DataLoader(dset2, batch_size=16, shuffle=True)

        else:
            x_train_task = x_train[y_train.flatten() == single_class_ind]
            x_train_task2 = x_train2[y_train2.flatten() == single_class_ind]
            x_train_task2 = x_train_task2[0:hyper_para.target_n]

            x_test = x_train_task[int(len(x_train_task) * 0.8):]
            x_train_task = x_train_task[0:int(len(x_train_task) * 0.8)]
            x_test2 = x_train_task2[int(len(x_train_task2) * 0.8):]
            x_train_task2 = x_train_task2[0:int(len(x_train_task2) * 0.8)]

            domain_lbl = [0] * len(x_train_task)
            x_train_task2 = np.tile(
                x_train_task2,
                (int(len(x_train_task) / len(x_train_task2)), 1, 1, 1))

            tst_lbl = [0] * len(x_test) + [1] * (
                len(x_test2) * int(len(x_test) / len(x_test2)))
            x_test2 = np.tile(x_test2,
                              (int(len(x_test) / len(x_test2)), 1, 1, 1))
            x_test = np.concatenate((x_test, x_test2))

            dset2 = RotateDataset(x_test, tst_lbl)
            testLoader = DataLoader(dset2, batch_size=16, shuffle=True)
            transformer = Transformer(8, 8)

        dset = RotateDataset(x_train_task, domain_lbl)
        trainLoader = DataLoader(dset, batch_size=512, shuffle=True)
        '''transformations_inds = np.tile(np.arange(transformer.n_transforms), len(x_train_task))
        x_train_task_transformed = transformer.transform_batch(np.repeat(x_train_task, transformer.n_transforms, axis=0),
                                                       transformations_inds)
        dset = CustomDataset(x_train_task_transformed,transformations_inds )
        trainLoader = DataLoader(dset, batch_size=32, shuffle=True)'''

        # define networks
        C = hyper_para.C
        C = torch.nn.DataParallel(C)
        # define loss functions
        ce_criterion = nn.CrossEntropyLoss()

        # define optimizer
        optimizer_c = optim.Adam(C.parameters(),
                                 lr=hyper_para.lr,
                                 betas=(0.9, 0.999))

        # turn on the train mode
        C.train(mode=True)

        # initialization of auxilary variables
        running_tl = 0.0
        running_cc = 0.0
        running_rc = 0.0
        running_ri = 0.0

        # if gpu use cuda

        best_acc = 0
        for i in range(100):  #int(100*hyper_para.source_n/len(x_train_task))):
            acct = 0
            nelt = 0
            acc0t = 0
            nel0t = 0
            acc1t = 0
            nel1t = 0
            if hyper_para.gpu:
                C.cuda()
            for idx, (inputs, labels, dlbls) in enumerate(trainLoader):
                inputs = inputs.permute(0, 3, 2, 1)
                t1 = time.time()
                if hyper_para.gpu:
                    inputs = inputs.cuda()
                    labels = labels.cuda()
                    dlbls = dlbls.cuda()
                act, fea = C(inputs)
                _, ind = torch.max(act, 1)

                if True:
                    loss_cc = ce_criterion(act, labels)
                    optimizer_c.zero_grad()
                    loss = loss_cc
                    loss.backward()
                    optimizer_c.step()
                running_cc += loss_cc.data
                t2 = time.time()
        torch.save(
            C.module.state_dict(),
            hyper_para.experiment_name + '_' + str(single_class_ind) + '.pth')

        w = oceval(hyper_para)

        # finetune

        if hyper_para.source == 'mnist':
            (x_train, y_train), (x_test, y_test) = load_mnist()
            (x_train2, y_train2), (x_test2, y_test2) = load_svhn()
        elif hyper_para.source == 'svhn':
            (x_train, y_train), (x_test, y_test) = load_svhn()
            (x_train2, y_train2), (x_test2, y_test2) = load_mnist()
        elif hyper_para.source == 'amazon':
            (x_train, y_train), (x_test, y_test) = load_amazon()
            (x_train2, y_train2), (x_test2, y_test2) = load_dslr()
        elif hyper_para.source == 'dslr':
            (x_train, y_train), (x_test, y_test) = load_dslr()
            (x_train2, y_train2), (x_test2, y_test2) = load_amazon()
        if hyper_para.method == 'justsource':
            x_train_task = x_train[y_train.flatten() == single_class_ind]

            x_test = x_train_task[int(len(x_train_task) * 0.8):]
            x_train_task = x_train_task[0:int(len(x_train_task) * 0.8)]
            domain_lbl = [0] * len(x_train_task)
            tst_lbl = [0] * len(x_test)
            dset2 = RotateDataset(x_test, tst_lbl)
            testLoader = DataLoader(dset2, batch_size=16, shuffle=True)

        else:  #if hyper_para.method == 'balancedsourcetarget':
            x_train_task = x_train[y_train.flatten() == single_class_ind]
            x_train_task2 = x_train2[y_train2.flatten() == single_class_ind]
            x_train_task2 = x_train_task2[0:hyper_para.target_n]

            x_test = x_train_task[int(len(x_train_task) * 0.8):]
            x_train_task = x_train_task[0:int(len(x_train_task) * 0.8)]
            x_test2 = x_train_task2[int(len(x_train_task2) * 0.8):]
            x_train_task2 = x_train_task2[0:int(len(x_train_task2) * 0.8)]

            domain_lbl = [0] * len(x_train_task) + [1] * (len(
                x_train_task2) * int(len(x_train_task) / len(x_train_task2)))
            x_train_task2 = np.tile(
                x_train_task2,
                (int(len(x_train_task) / len(x_train_task2)), 1, 1, 1))
            x_train_task = np.concatenate((x_train_task, x_train_task2))
            tst_lbl = [0] * len(x_test) + [1] * (
                len(x_test2) * int(len(x_test) / len(x_test2)))
            x_test2 = np.tile(x_test2,
                              (int(len(x_test) / len(x_test2)), 1, 1, 1))
            x_test = np.concatenate((x_test, x_test2))

            dset2 = RotateDataset(x_test, tst_lbl)
            testLoader = DataLoader(dset2, batch_size=16, shuffle=True)
            transformer = Transformer(8, 8)

        dset = RotateDataset(x_train_task, domain_lbl)
        trainLoader = DataLoader(dset, batch_size=512, shuffle=True)
        '''transformations_inds = np.tile(np.arange(transformer.n_transforms), len(x_train_task))
        x_train_task_transformed = transformer.transform_batch(np.repeat(x_train_task, transformer.n_transforms, axis=0),
                                                       transformations_inds)
        dset = CustomDataset(x_train_task_transformed,transformations_inds )
        trainLoader = DataLoader(dset, batch_size=32, shuffle=True)'''

        if hyper_para.method == 'dd':
            Dnet = FCDiscriminator().cuda()
            optimizer_D = optim.Adam(Dnet.parameters(),
                                     lr=hyper_para.lr,
                                     betas=(0.9, 0.999))
            Dnet.train()
        # define networks
        C = hyper_para.C
        C = torch.nn.DataParallel(C)
        # define loss functions
        print(w)
        ce_criterion = nn.CrossEntropyLoss(weight=torch.Tensor(w).cuda())

        # define optimizer
        optimizer_c = optim.Adam(C.parameters(),
                                 lr=hyper_para.lr,
                                 betas=(0.9, 0.999))

        # turn on the train mode
        C.train(mode=True)

        # initialization of auxilary variables
        running_tl = 0.0
        running_cc = 0.0
        running_rc = 0.0
        running_ri = 0.0

        # if gpu use cuda

        best_acc = 0
        for i in range(500):  #int(100*hyper_para.source_n/len(x_train_task))):
            acct = 0
            nelt = 0
            acc0t = 0
            nel0t = 0
            acc1t = 0
            nel1t = 0
            if hyper_para.gpu:
                C.cuda()
            for idx, (inputs, labels, dlbls) in enumerate(trainLoader):
                inputs = inputs.permute(0, 3, 2, 1)
                t1 = time.time()
                if hyper_para.gpu:
                    inputs = inputs.cuda()
                    labels = labels.cuda()
                    dlbls = dlbls.cuda()
                act, fea = C(inputs)
                _, ind = torch.max(act, 1)

                if hyper_para.method == 'dd':
                    # Train Discriminator
                    Dnet.train()
                    d = Dnet(fea)
                    _, mind = torch.max(d, 1)
                    acc = torch.mean(torch.eq(mind, dlbls).cpu().float())
                    optimizer_D.zero_grad()
                    optimizer_c.zero_grad()
                    loss_d = nnfunc.binary_cross_entropy_with_logits(
                        d.squeeze(), dlbls.float())
                    loss_cc = ce_criterion(act, labels)
                    loss = loss_cc + loss_d
                    loss.backward()
                    optimizer_c.step()
                    optimizer_D.step()
                else:
                    loss_cc = ce_criterion(act, labels)
                    optimizer_c.zero_grad()
                    loss = loss_cc
                    loss.backward()
                    optimizer_c.step()
                running_cc += loss_cc.data
                t2 = time.time()
                acct += torch.sum(torch.eq(ind, labels)).cpu().numpy()
                nelt += ind.shape[0]
                acc0t += torch.sum(
                    torch.eq(ind[dlbls == 0],
                             labels[dlbls == 0])).cpu().numpy()
                nel0t += (dlbls == 0).shape[0]
                acc1t += torch.sum(
                    torch.eq(ind[dlbls == 1],
                             labels[dlbls == 1])).cpu().numpy()
                nel1t += (dlbls == 1).shape[0]
                if idx % 10 == 0:
                    line = hyper_para.BLUE + '[' + str(format(i + 1, '8d')) + '/' + str(
                    format(int(hyper_para.iterations), '8d')) + ']' + hyper_para.ENDC + \
                       hyper_para.GREEN + ' loss_cc: ' + hyper_para.ENDC + str(
                    format(running_cc / hyper_para.stats_frequency, '1.8f')) + \
                       hyper_para.YELLOW + ' time (min): ' + hyper_para.ENDC + str(int((t2 - t1) * 20.0))
                    print(line)
                    acc = 0
                    nel = 0
                    acc0 = 0
                    nel0 = 0
                    acc1 = 0
                    nel1 = 0
                    for idx, (inputs, labels, dlbls) in enumerate(testLoader):
                        inputs = inputs.permute(0, 3, 2, 1)
                        t1 = time.time()
                        if hyper_para.gpu:
                            inputs = inputs.cuda()
                            labels = labels.cuda()
                            dlbls = dlbls.cuda()
                        act, _ = C(inputs)
                        _, ind = torch.max(act, 1)
                        acc += torch.sum(torch.eq(ind, labels)).cpu().numpy()
                        nel += ind.shape[0]
                        acc0 += torch.sum(
                            torch.eq(ind[dlbls == 0],
                                     labels[dlbls == 0])).cpu().numpy()
                        nel0 += (dlbls == 0).shape[0]
                        acc1 += torch.sum(
                            torch.eq(ind[dlbls == 1],
                                     labels[dlbls == 1])).cpu().numpy()
                        nel1 += (dlbls == 1).shape[0]
                print(['Val', acc / nel, acc0 / nel0, acc1 / nel1, nel0, nel1])
                if acc / nel >= best_acc:
                    torch.save(
                        C.module.state_dict(), hyper_para.experiment_name +
                        '_' + str(single_class_ind) + '.pth')
                    best_acc = acc / nel
                running_cc = 0.0
            print([
                'Train', acct / (nel0t + nel1t), acc0t / nel0t, acc1t / nel1t,
                nel0t, nel1t
            ])
Exemplo n.º 7
0
def _transformations_experiment(dataset_load_fn, dataset_name,
                                single_class_ind, gpu_q):
    gpu_to_use = gpu_q.get()
    os.environ["CUDA_VISIBLE_DEVICES"] = gpu_to_use

    (x_train, y_train), (x_test, y_test) = dataset_load_fn()

    if dataset_name in ['cats-vs-dogs']:
        transformer = Transformer(16, 16)
        n, k = (16, 8)
    else:
        transformer = Transformer(8, 8)
        n, k = (10, 4)
    #mdl = create_wide_residual_network(x_train.shape[1:], transformer.n_transforms, n, k)
    '''mdl.compile('adam',
                'categorical_crossentropy',
                ['acc'])'''

    x_train_task = x_train[y_train.flatten() == single_class_ind]
    #x_train_task =     x_train_task[0:15][:][:][:]
    transformations_inds = np.tile(np.arange(transformer.n_transforms),
                                   len(x_train_task))
    x_train_task_transformed = transformer.transform_batch(
        np.repeat(x_train_task, transformer.n_transforms, axis=0),
        transformations_inds)
    batch_size = 32
    '''mdl.fit(x=x_train_task_transformed, y=to_categorical(transformations_inds),
                batch_size=batch_size, epochs=int(np.ceil(200/transformer.n_transforms)))
    mdl_weights_name = '{}_transformations_{}_weights.h5'.format(dataset_name,
                                                               get_class_name_from_index(single_class_ind, dataset_name))
    #mdl.load_weights('cifar10/'+mdl_weights_name)

    #################################################################################################
    # simplified normality score
    #################################################################################################
    preds = np.zeros((len(x_test), transformer.n_transforms))
    for t in [1]:#range(1):
         preds[:, t] = mdl.predict(transformer.transform_batch(x_test, [t] * len(x_test)),
                                   batch_size=batch_size)[:, t]
    
    labels = y_test.flatten() == single_class_ind
    scores = preds.mean(axis=-1)
    #print("Accuracy : "+ str(scores))
    #################################################################################################'''
    dset = CustomDataset(x_train_task_transformed, transformations_inds)
    trainLoader = DataLoader(dset, batch_size=32, shuffle=True)
    ce_criterion = nn.CrossEntropyLoss()
    C = wrn.WideResNet(28, num_classes=72, dropout_rate=0,
                       widen_factor=10).cuda()
    C = nn.DataParallel(C)
    optimizer_c = optim.Adam(C.parameters(), lr=0.001, betas=(0.9, 0.999))
    C.train(mode=True)
    '''for epoch in range(int(1)):
        for (inputs, labels) in trainLoader:
            inputs = inputs.permute(0,3,2,1)
            if True:
                inputs = inputs.cuda()
                labels = labels.cuda()
            act,_ = C(inputs)
            loss_cc = ce_criterion(act, labels)
            optimizer_c.zero_grad()
            loss_cc.backward()
            optimizer_c.step()
            #running_cc += loss_cc.data


            running_cc = 0.0
    torch.save(C.cpu().state_dict(),  'out.pth')'''

    C = C.cpu()
    C.load_state_dict(torch.load('out.pth'))
    (x_train, y_train), (x_test, y_test) = load_cifar10()
    transformer = Transformer(8, 8)
    glabels = y_test.flatten() == single_class_ind
    C.cuda().eval()
    scores = np.array([[]])
    features = []

    correct = 0
    total = 0
    preds = np.zeros((len(x_test), transformer.n_transforms))
    for t in [6, 6]:  #range(72):
        score = []
        x_test0 = transformer.transform_batch(x_test, [t] * len(x_test))
        dset = CustomDataset(x_test0, [t] * len(x_test))
        testLoader = DataLoader(dset, batch_size=128, shuffle=False)
        for i, (inputs, labels) in enumerate(testLoader):
            inputs = inputs.permute(0, 3, 2, 1)
            if True:
                inputs = inputs.cuda()
                labels = labels.cuda()
            act, f = C(inputs)
            features += f.detach().cpu().tolist()
            #act = torch.nn.functional.softmax(act, dim=1)
            score += act[:, t].detach().cpu().tolist()
        preds[:, t] = list(score)
        fpr, tpr, thresholds = metrics.roc_curve(glabels, score)
        AUC = metrics.auc(fpr, tpr)
        print('AUROC: ' + str(AUC))

    scores = np.sum(((preds)), 1)
    fpr, tpr, thresholds = metrics.roc_curve(glabels, scores)
    AUC = metrics.auc(fpr, tpr)
    print('AUROC: ' + str(AUC))

    def calc_approx_alpha_sum(observations):
        N = len(observations)
        f = np.mean(observations, axis=0)

        return (N * (len(f) - 1) *
                (-psi(1))) / (N * np.sum(f * np.log(f)) -
                              np.sum(f * np.sum(np.log(observations), axis=0)))

    def inv_psi(y, iters=5):
        # initial estimate
        cond = y >= -2.22
        x = cond * (np.exp(y) + 0.5) + (1 - cond) * -1 / (y - psi(1))

        for _ in range(iters):
            x = x - (psi(x) - y) / polygamma(1, x)
        return x

    def fixed_point_dirichlet_mle(alpha_init, log_p_hat, max_iter=1000):
        alpha_new = alpha_old = alpha_init
        for _ in range(max_iter):
            alpha_new = inv_psi(psi(np.sum(alpha_old)) + log_p_hat)
            if np.sqrt(np.sum((alpha_old - alpha_new)**2)) < 1e-9:
                break
            alpha_old = alpha_new
        return alpha_new

    def dirichlet_normality_score(alpha, p):
        return np.sum((alpha - 1) * np.log(p), axis=-1)

    '''scores = np.zeros((len(x_test),))
    observed_data = x_train_task
    for t_ind in range(transformer.n_transforms):
        observed_dirichlet = mdl.predict(transformer.transform_batch(observed_data, [t_ind] * len(observed_data)),
                                         batch_size=64)
        log_p_hat_train = np.log(observed_dirichlet).mean(axis=0)

        alpha_sum_approx = calc_approx_alpha_sum(observed_dirichlet)
        alpha_0 = observed_dirichlet.mean(axis=0) * alpha_sum_approx

        mle_alpha_t = fixed_point_dirichlet_mle(alpha_0, log_p_hat_train)

        x_test_p = mdl.predict(transformer.transform_batch(x_test, [t_ind] * len(x_test)),
                               batch_size=64)
        scores += dirichlet_normality_score(mle_alpha_t, x_test_p)'''

    scores /= transformer.n_transforms
    labels = y_test.flatten() == single_class_ind
    r = (roc_auc_score(labels, scores))
    f = open("guru99.txt", "a")
    f.write(str(r) + "\n")
    f.close()
    '''res_file_name = '{}_transformations_{}_{}.npz'.format(dataset_name,
Exemplo n.º 8
0
def octrain(hyper_para):
    for single_class_ind in [0]:  #range(10):
        hyper_para.C = wrn.WideResNet(28,
                                      num_classes=72,
                                      dropout_rate=0,
                                      widen_factor=10)
        (x_train, y_train), (x_test, y_test) = load_cifar10()
        x_train_task = x_train[y_train.flatten() == single_class_ind]
        dset = RotateDataset(x_train_task)
        trainLoader = DataLoader(dset, batch_size=512, shuffle=True)
        transformer = Transformer(8, 8)
        '''transformations_inds = np.tile(np.arange(transformer.n_transforms), len(x_train_task))
        x_train_task_transformed = transformer.transform_batch(np.repeat(x_train_task, transformer.n_transforms, axis=0),
                                                       transformations_inds)
        dset = CustomDataset(x_train_task_transformed,transformations_inds )
        trainLoader = DataLoader(dset, batch_size=32, shuffle=True)'''

        # define networks
        C = hyper_para.C
        C = torch.nn.DataParallel(C)
        # define loss functions
        ce_criterion = nn.CrossEntropyLoss()

        # define optimizer
        optimizer_c = optim.Adam(C.parameters(),
                                 lr=hyper_para.lr,
                                 betas=(0.9, 0.999))

        # turn on the train mode
        C.train(mode=True)

        # initialization of auxilary variables
        running_tl = 0.0
        running_cc = 0.0
        running_rc = 0.0
        running_ri = 0.0

        # if gpu use cuda

        for i in range(100):
            if hyper_para.gpu:
                C.cuda()
            for idx, (inputs, labels) in enumerate(trainLoader):
                inputs = inputs.permute(0, 3, 2, 1)
                t1 = time.time()
                if hyper_para.gpu:
                    inputs = inputs.cuda()
                    labels = labels.cuda()
                act, _ = C(inputs)
                loss_cc = ce_criterion(act, labels)
                optimizer_c.zero_grad()
                loss_cc.backward()
                optimizer_c.step()
                running_cc += loss_cc.data
                t2 = time.time()
                if idx % 10 == 0:
                    line = hyper_para.BLUE + '[' + str(format(i + 1, '8d')) + '/' + str(
                    format(int(hyper_para.iterations), '8d')) + ']' + hyper_para.ENDC + \
                       hyper_para.GREEN + ' loss_cc: ' + hyper_para.ENDC + str(
                    format(running_cc / hyper_para.stats_frequency, '1.8f')) + \
                       hyper_para.YELLOW + ' time (min): ' + hyper_para.ENDC + str(int((t2 - t1) * 20.0))
                    print(line)
                running_cc = 0.0

        torch.save(
            C.module.state_dict(),
            hyper_para.experiment_name + '_' + str(single_class_ind) + '.pth')
Exemplo n.º 9
0
def octest(hyper_para):
    CC = wrn.WideResNet(28, num_classes=10, dropout_rate=0,
                        widen_factor=10).cuda()
    CC.load_state_dict(torch.load(hyper_para.experiment_name + '.pth'))
    C = wrn.WideResNet(28, num_classes=72, dropout_rate=0,
                       widen_factor=10).cuda()
    C.cuda().eval()
    CC.cuda().eval()

    muc = {}
    stdc = {}
    mu = {}
    std = {}
    for cname in hyper_para.inclass:
        single_class_ind = cname
        C.load_state_dict(
            torch.load('saved/' + hyper_para.experiment_name + '_' +
                       str(cname) + '.pth'))
        (x_train, y_train), (x_test, y_test) = load_cifar10()
        transformer = Transformer(8, 8)
        x_train_task0 = x_train[[
            i in hyper_para.inclass for i in y_train.flatten()
        ]]
        y_train_task = y_train[[
            i in hyper_para.inclass for i in y_train.flatten()
        ]]

        for t in range(72):
            x_train_task = transformer.transform_batch(x_train_task0,
                                                       [t] * len(y_train_task))
            dset = CustomDataset(x_train_task, y_train_task)
            trainLoader = DataLoader(dset, batch_size=128, shuffle=True)
            features = []
            for inputs0, labels in trainLoader:
                inputs = inputs0.permute(0, 3, 2, 1).cuda()
                act, f = C(inputs)
                features += act[:, t].detach().cpu().tolist()
            if t == 0:
                totfeatures = features
            else:
                totfeatures += features

        mu[str(cname)] = np.mean(totfeatures)
        std[str(cname)] = np.sqrt(np.var(totfeatures))

    features = {}

    if True:
        (x_train, y_train), (x_test, y_test) = load_cifar10()
        x_train_task = x_train[[
            i in hyper_para.inclass for i in y_train.flatten()
        ]]
        y_train_task = y_train[[
            i in hyper_para.inclass for i in y_train.flatten()
        ]]
        dset = CustomDataset(x_train_task, y_train_task)
        trainLoader = DataLoader(dset, batch_size=128, shuffle=True)
        for inputs0, labels0 in trainLoader:
            inputs = inputs0.permute(0, 3, 2, 1).cuda()
            act, f = CC(inputs)
            val, ind = torch.max(act, dim=1)
            val, ind, labels0 = (val.detach().cpu().tolist(),
                                 ind.detach().cpu().tolist(),
                                 labels0.detach().cpu().tolist())
            for idx, (ii, gt) in enumerate(zip(ind, labels0)):
                gt = gt[0]
                if ii == gt and gt in hyper_para.inclass:
                    if str(ii) not in features.keys():
                        features[str(ii)] = [
                            act[idx, ii].detach().cpu().tolist()
                        ]
                    else:
                        features[str(ii)] += [
                            act[idx, ii].detach().cpu().tolist()
                        ]
                    print(np.shape(features[str(ii)]))
        for k in features.keys():
            muc[str(k)] = np.mean(features[str(k)])
            stdc[str(k)] = np.sqrt(np.var(features[str(k)]))

    (x_train, y_train), (x_test, y_test) = load_cifar10()
    transformer = Transformer(8, 8)

    scores = np.array([[]])
    features = []
    lbl = []
    correct = 0
    total = 0
    preds = np.zeros((len(x_test), transformer.n_transforms))
    dset = CustomDataset(x_test, y_test)
    testLoader = DataLoader(dset, batch_size=128)
    score = []
    for i, (inputs0, labels) in enumerate(testLoader):
        inputs = inputs0.permute(0, 3, 2, 1)
        if True:
            inputs = inputs.cuda()
            labels = labels.cuda()

        act0, f = CC(inputs)
        features += f.detach().cpu().tolist()
        val, ind = torch.max(act0, dim=1)
        val, ind, labels = (val.detach().cpu().tolist(),
                            ind.detach().cpu().tolist(),
                            labels.detach().cpu().tolist())
        #act = torch.nn.functional.softmax(act, dim=1)

        #score += val

        for idx, (ii, gt) in enumerate(zip(ind, labels)):
            C.load_state_dict(
                torch.load('saved/' + hyper_para.experiment_name + '_' +
                           str(ii) + '.pth'))
            gt = gt[0]
            score_temp = []
            for t in range(72):
                x_test0 = transformer.transform_batch(
                    torch.unsqueeze(inputs0[idx, :, :, :],
                                    0).detach().cpu().numpy(), [t])
                inputs = torch.tensor(x_test0).permute(0, 3, 2, 1).cuda()
                act, _ = C(inputs)
                act = act[:, t]
                act = act.detach().cpu().tolist()
                if t == 0:
                    score_temp = act[0]
                else:
                    score_temp += act[t]
            score += [(score_temp - mu[str(ii)]) / (std[str(ii)]) +
                      (val[idx] - muc[str(ii)]) / (stdc[str(ii)])]

            if gt in hyper_para.inclass:
                total += 1
                if ii == gt:
                    correct += 1
                lbl.append(1)
            else:
                lbl.append(0)

    fpr, tpr, thresholds = metrics.roc_curve(lbl, score)
    AUC = metrics.auc(fpr, tpr)
    print('AUROC: ' + str(AUC))
    return ([0, 0])
Exemplo n.º 10
0
def os_train(hyper_para):
    C = wrn.WideResNet(28, num_classes=10, dropout_rate=0,
                       widen_factor=10).cuda()
    single_class_ind = hyper_para.inclass[0]
    (x_train, y_train), (x_test, y_test) = load_cifar10()
    transformer = Transformer(8, 8)
    x_train_task = x_train[[
        i in hyper_para.inclass for i in y_train.flatten()
    ]]
    y_train_task = y_train[[
        i in hyper_para.inclass for i in y_train.flatten()
    ]]
    print(np.shape(y_train_task))
    print(np.shape(y_train))
    y_train_task = y_train_task.astype(int)
    #x_train_task =     x_train_task[0:15][:][:][:]

    dset = CustomDataset(x_train_task, y_train_task)
    trainLoader = DataLoader(dset, batch_size=128, shuffle=True)
    # define networks
    # define loss functions
    ce_criterion = nn.CrossEntropyLoss()

    # define optimizer
    optimizer_c = optim.Adam(C.parameters(),
                             lr=hyper_para.lr,
                             betas=(0.9, 0.999))

    # turn on the train mode
    C.train(mode=True)

    # initialization of auxilary variables
    running_tl = 0.0
    running_cc = 0.0
    running_rc = 0.0
    running_ri = 0.0

    # if gpu use cuda

    for i in range(int(20)):
        if hyper_para.gpu:
            C.cuda()
        for iii, (inputs, labels) in enumerate(trainLoader):
            inputs = inputs.permute(0, 3, 2, 1)
            t1 = time.time()
            if hyper_para.gpu:
                inputs = inputs.cuda()
                labels = labels[:, 0].cuda()
            act, _ = C(inputs)
            loss_cc = ce_criterion(act, labels)
            optimizer_c.zero_grad()
            loss_cc.backward()
            optimizer_c.step()
            running_cc += loss_cc.data
            t2 = time.time()
            if iii % 50 == 0:
                line = hyper_para.BLUE + '[' + str(format(i + 1, '8d')) + '/' + str(
                    format(int(hyper_para.iterations), '8d')) + ']' + hyper_para.ENDC + \
                       hyper_para.GREEN + ' loss_cc: ' + hyper_para.ENDC + str(
                    format(running_cc / hyper_para.stats_frequency, '1.8f')) + \
                       hyper_para.YELLOW + ' time (min): ' + hyper_para.ENDC + str(int((t2 - t1) * 20.0))
                print(line)
                running_cc = 0.0

        torch.save(C.state_dict(), hyper_para.experiment_name + '.pth')