Exemplo n.º 1
0
def imshow_segms(img_or_path,
                  segms=None,
                  labels=None,
                  scores=None,
                  score_threshold=0.0,
                  colors='red',
                  thickness=3,
                  show=True,
                  win_name='',
                  wait_time=0,
                  out_file=None,
                  return_img=False,
                  draw_contours=False):
    
    grayscale_image = img_or_path.astype(np.float64)
    max_value = np.max(grayscale_image)
    min_value = np.min(grayscale_image)
    grayscale_image = 255 * (grayscale_image - min_value) / (max_value - min_value)
    grayscale_image = grayscale_image.astype(np.uint8)

    grayscale_image = np.pad(grayscale_image, ((25, 25), (25, 25)), 'constant', constant_values = (0, 0))

    # grayscale_image[grayscale_image < 128] = 0

    ret, grayscale_image = cv2.threshold(grayscale_image, 128, 255, 0)
    nLabels, labels, stats, centroids = cv2.connectedComponentsWithStats(grayscale_image.astype(np.uint8), connectivity=4)

    det = []
    mapper = []
    for k in range(1, nLabels):
        # size filtering
        size = stats[k, cv2.CC_STAT_AREA]
        if size < 10: continue

        x, y = stats[k, cv2.CC_STAT_LEFT], stats[k, cv2.CC_STAT_TOP]
        w, h = stats[k, cv2.CC_STAT_WIDTH], stats[k, cv2.CC_STAT_HEIGHT]
        niter = int(np.sqrt(size * min(w, h) / (w * h)) * 2)

        kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(1 + niter, 1 + niter))
        grayscale_image = cv2.dilate(grayscale_image, kernel)

        # make box
        np_contours = np.roll(np.array(np.where(grayscale_image!=0)),1,axis=0).transpose().reshape(-1,2)
        rect = cv2.minAreaRect(np_contours)
        box = cv2.boxPoints(rect)
        box = np.int0(box)
        cv2.drawContours(grayscale_image, [box], 0, (0, 0, 255), 3)

        x, y, w, h, theta = rect[0][0], rect[0][1], rect[1][0], rect[1][1], rect[2]
        theta = theta * np.pi / 180.0
        thetaobb = [x, y, w, h, theta]
        print(thetaobb)
        pointobb = thetaobb2pointobb(thetaobb)
        print(pointobb)
        imshow_rbboxes(grayscale_image, pointobb, win_name='demo')
Exemplo n.º 2
0
    def __hrsc_parse__(self, hrsc_label_file, hrsc_image_file):
        objects = []
        if self.groundtruth:
            tree = ET.parse(hrsc_label_file)
            root = tree.getroot()
            objects = []
            hrsc_object = root.find('HRSC_Objects')
            for hrsc_sub_object in hrsc_object.findall('HRSC_Object'):
                obj_struct = {}
                xmin = float(hrsc_sub_object.find('box_xmin').text)
                ymin = float(hrsc_sub_object.find('box_ymin').text)
                xmax = float(hrsc_sub_object.find('box_xmax').text)
                ymax = float(hrsc_sub_object.find('box_ymax').text)
                bbox_w = xmax - xmin
                bbox_h = ymax - ymin

                cx = float(hrsc_sub_object.find('mbox_cx').text)
                cy = float(hrsc_sub_object.find('mbox_cy').text)
                rbbox_w = float(hrsc_sub_object.find('mbox_w').text)
                rbbox_h = float(hrsc_sub_object.find('mbox_h').text)
                angle = float(hrsc_sub_object.find('mbox_ang').text)
                # angle = angle * 180.0 / np.pi

                obj_struct['bbox'] = [xmin, ymin, bbox_w, bbox_h]
                obj_struct['thetaobb'] = [cx, cy, rbbox_w, rbbox_h, angle]
                obj_struct['segmentation'] = thetaobb2pointobb(
                    obj_struct['thetaobb'])
                obj_struct['pointobb'] = pointobb_sort_function[
                    pointobb_sort_method](obj_struct['segmentation'])
                obj_struct['keypoints'] = obj_struct['pointobb'][:]
                for idx in [2, 5, 8, 11]:
                    obj_struct['keypoints'].insert(idx, 2)
                obj_struct['hobb'] = thetaobb2hobb(
                    obj_struct['thetaobb'],
                    pointobb_sort_function[pointobb_sort_method])
                obj_struct['label'] = 1

                objects.append(obj_struct)
        else:
            obj_struct = {}
            obj_struct['segmentation'] = [0, 0, 0, 0, 0, 0, 0, 0]
            obj_struct['keypoint'] = [0, 0, 0, 0, 0, 0, 0, 0]
            obj_struct['pointobb'] = [0, 0, 0, 0, 0, 0, 0, 0]
            obj_struct['thetaobb'] = [0, 0, 0, 0, 0]
            obj_struct['hobb'] = [0, 0, 0, 0, 0]
            obj_struct['bbox'] = [0, 0, 0, 0]
            obj_struct['label'] = 0

            objects.append(obj_struct)
        return objects
Exemplo n.º 3
0
def imshow_rbboxes(img_or_path,
                   rbboxes,
                   labels=None,
                   scores=None,
                   score_threshold=0.0,
                   colors='red',
                   show_label=False,
                   show_score=False,
                   thickness=3,
                   show=True,
                   win_name='',
                   wait_time=0,
                   out_file=None,
                   return_img=False):
    """ Draw oriented bounding boxes on image

    Args:
        img (str or ndarray): The image to be displayed.
        rbboxes (list or ndarray): A ndarray of shape (N, 8)
        labels (list or ndarray): A ndarray of shape (N, 1)
        scores (list or ndarray): A ndarray of shape (N, 1)
    """
    if is_str(img_or_path):
        img = cv2.imread(img_or_path)
    else:
        img = img_or_path

    if rbboxes == []:
        return

    if isinstance(rbboxes, list):
        rbboxes = np.array(rbboxes)

    if rbboxes.shape[1] == 5:
        rbboxes_ = []
        for rbbox in rbboxes:
            rbboxes_.append(thetaobb2pointobb(rbbox))
        rbboxes = np.array(rbboxes_)
    if rbboxes.ndim == 1:
        rbboxes = np.array([rbboxes])

    if labels is None:
        labels_vis = np.array(['ins'] * rbboxes.shape[0])
    else:
        labels_vis = np.array(labels)
        if labels_vis.ndim == 0:
            labels_vis = np.array([labels_vis])

    if scores is None:
        scores_vis = np.array([1.0] * rbboxes.shape[0])
    else:
        scores_vis = np.array(scores)
        if scores_vis.ndim == 0:
            scores_vis = np.array([scores_vis])

    if labels is None:
        colors = dict()
        colors[colors] = color_val(colors)
    else:
        max_label = max(labels)
        colors = [color_val(_) for _ in range(max_label + 1)]

    for rbbox, label, score in zip(rbboxes, labels_vis, scores_vis):
        if score < score_threshold:
            continue
        if len(rbbox) == 5:
            rbbox = np.array(thetaobb2pointobb(rbbox))
        rbbox = rbbox.astype(np.int32)

        cx = np.mean(rbbox[::2])
        cy = np.mean(rbbox[1::2])

        current_color = colors[label]

        for idx in range(-1, 3, 1):
            cv2.line(
                img, (int(rbbox[idx * 2]), int(rbbox[idx * 2 + 1])),
                (int(rbbox[(idx + 1) * 2]), int(rbbox[(idx + 1) * 2 + 1])),
                current_color,
                thickness=thickness)

        if show_label:
            cv2.putText(img,
                        label, (cx, cy),
                        cv2.FONT_HERSHEY_COMPLEX_SMALL,
                        fontScale=1.0,
                        color=current_color,
                        thickness=2,
                        lineType=8)
        if show_score:
            cv2.putText(img,
                        "{:.2f}".format(score), (cx, cy),
                        cv2.FONT_HERSHEY_COMPLEX_SMALL,
                        fontScale=1.0,
                        color=current_color,
                        thickness=2,
                        lineType=8)

    if show:
        cv2.namedWindow(win_name, cv2.WINDOW_NORMAL)
        cv2.imshow(win_name, img)
        cv2.waitKey(wait_time)
    if out_file is not None:
        dir_name = osp.abspath(osp.dirname(out_file))
        mkdir_or_exist(dir_name)
        cv2.imwrite(out_file, img)
    if return_img:
        return img
Exemplo n.º 4
0
                 ],
                 [
                     57.678192138671875, 259.0009765625, 83.1702880859375,
                     179.4698944091797, -0.4243928624890527
                 ],
                 [
                     264.6916809082031, 741.2076416015625, 82.70415496826172,
                     145.08529663085938, -0.42366891543622837
                 ],
                 [
                     373.6033630371094, 713.7134399414062, 81.72265625,
                     179.64755249023438, -0.4245613407175139
                 ]]

    for thetaobb in thetaobbs:
        pointobb = thetaobb2pointobb(thetaobb)
        pointobbs.append(pointobb)

    pseudomasks = np.zeros((height, width), dtype=np.int32)
    for pointobb in pointobbs:
        transformed, mask_location = pointobb2pseudomask(pointobb,
                                                         anchor_image,
                                                         host_height=height,
                                                         host_width=width)
        # show_grayscale_as_heatmap(transformed)
        transformed = transformed.astype(np.int32)
        pseudomasks[mask_location[1]:mask_location[3],
                    mask_location[0]:mask_location[2]] = np.where(
                        transformed >
                        pseudomasks[mask_location[1]:mask_location[3],
                                    mask_location[0]:mask_location[2]],