Exemplo n.º 1
0
def mapToPhysicalQubits(op, ansatz, logical2PhysicalMap):
    n_qubits = max(logical2PhysicalMap) + 1
    ir = op.toXACCIR()
    xacc.setOption('qubit-map',
                   ','.join([str(i) for i in logical2PhysicalMap]))
    irp = xacc.getIRPreprocessor('qubit-map-preprocessor')
    irp.process(ir)

    ham = PauliOperator()
    ham.fromXACCIR(ir)

    ansatzir = xacc.gate.createIR()
    ansatzir.addKernel(ansatz)
    irp.process(ansatzir)
    xacc.unsetOption('qubit-map')
    return ham, ansatz, n_qubits
# logging.getLogger().setLevel(logging.DEBUG)
# requests_log = logging.getLogger("requests.packages.urllib3")
# requests_log.setLevel(logging.DEBUG)
# requests_log.propagate = True

# requests.get('https://httpbin.org/headers')

# File names to pass in for training and testing data
train_file = os.path.join('nist_data/optdigits.tra')
test_file = os.path.join('nist_data/optdigits.tes')
# Initialize the xacc framework
xacc.Initialize()
# Get the XACC D-Wave accelerator
dwave = xacc.getAccelerator('dwave')
# Select which D-Wave solver to use
xacc.setOption('dwave-solver', 'DW_2000Q_VFYC_2_1')
# Create an AcceleratorBuffer for use in the XACC D-Wave accelerator
buffer = dwave.createBuffer("buffer")
# Add embedding to AcceleratorBuffer
f = open('embedding.txt', 'r')
embedding = ast.literal_eval(f.read())
f.close()
buffer.addExtraInfo('embedding', embedding)

# Specify the settings for the algorithm execution
# These can also be passed directly into the xacc.qpu() decorator as keyword arguments
# an optional argument for naming the output buffer file
# is 'output': 'name_of_file' (no file extension)
settings = {'algo': "mnist_digit_train",
            'accelerator': dwave,
            'train_data': train_file,
Exemplo n.º 3
0
    def __call__(self, *args, **kwargs):
        super().__call__(*args, **kwargs)

        self.initial_rbm = True
        self.buffer = args[0]
        self.embedding = self.buffer.getInformation('embedding')

        # Get the training parameters (rate, num_epochs, batch_size, momentum)
        self.learn_rate = self.kwargs['rate']
        self.num_epochs = self.kwargs['num_epochs']
        self.momentum = self.kwargs['momentum']
        self.batch_size = self.kwargs['batch_size']
        self.num_classes = self.kwargs['max_classes']
        self.train_steps = self.kwargs['train_steps']

        if 'chain-strength' in self.kwargs:
            xacc.setOption('chain-strength', self.kwargs['chain_strength'])
        if 'num_samples' in self.kwargs:
            xacc.setOption('dwave-num-reads', self.kwargs['num_samples'])

        # Get parameterized DWK
        self.rbm_function = self.compiledKernel

        # Might be a better way to get these values, but this is what I'm shooting for right now
        self.numV = 0
        self.numH = 0
        self.numW = 0
        for inst in self.rbm_function.getParameters():
            if 'v' in inst:
                self.numV += 1
            if 'h' in inst:
                self.numH += 1
            if 'w' in inst:
                self.numW += 1

        # Initializing the weights from a random normal distribution
        # Initializing the hidden and visible biases to be zero
        self.weights = np.random.normal(0.01, 1.0, (self.numV, self.numH))
        self.visible_bias = np.zeros((1, self.numV))
        self.hidden_bias = np.zeros((1, self.numH))
        tic = time.clock()

        self.data, self.n_evts = self.readTrainData(self.kwargs['train_data'])
        self.data = self.batchData(self.data, self.batch_size)

        for epoch in range(self.num_epochs):

            train_step = 0
            for batch in self.data:
                xacc.info("Train Step {}".format(train_step))
                if train_step >= self.train_steps > -1:
                    break

                # get data expectation values
                dataExpW, dataExpV, dataExpH = self.getDataExpectations(batch)

                # set the RBM
                self.setRBM()

                training_buffer = self.qpu.createBuffer("buffer")
                training_buffer.addExtraInfo('embedding', self.embedding)

                # Execute the RBM with the new parameters
                self.executeRBM(training_buffer)

                # Get the expectation values from the D-Wave execution
                modelExpW, modelExpV, modelExpH = self.getExpectations()

                # Update the parameters for this batch
                self.updateParameters(dataExpW, modelExpW, dataExpV, modelExpV,
                                      dataExpH, modelExpH)

                train_step += 1

        self.buffer.addExtraInfo("rbm_visible",
                                 self.visible_bias.flatten().tolist())
        self.buffer.addExtraInfo("rbm_hidden",
                                 self.hidden_bias.flatten().tolist())
        self.buffer.addExtraInfo("rbm_weights",
                                 self.weights.flatten().tolist())

        toc = time.clock()
        training_time = toc - tic
        if 'test_data' in self.kwargs:
            self.test_data, self.test_targets, n_tests = self.readTestData(
                self.kwargs['test_data'])
            self.test_data = self.batchData(self.test_data, self.batch_size)
            evals = np.zeros((n_tests, self.num_classes))
            truth_vals = np.zeros(n_tests)

            for digit in range(self.num_classes):
                w = np.reshape(
                    np.array(self.buffer.getInformation("rbm_weights")),
                    (self.numV, self.numH))
                v = np.reshape(
                    np.array(self.buffer.getInformation("rbm_visible")),
                    (1, self.numV))
                h = np.reshape(
                    np.array(self.buffer.getInformation("rbm_hidden")),
                    (1, self.numH))
                count = 0
                for i, batch in enumerate(self.test_data):
                    Fv = self.freeEnergy(batch, w, v, h)
                    targets = np.reshape(self.test_targets[i], (-1, ))
                    ll = list(zip(targets, Fv))
                    for j, item in enumerate(ll):
                        idx = i * self.batch_size + j
                        evals[idx, digit] = item[1]
                        if digit == 0:
                            truth_vals[idx] = item[0]

            softmax = np.exp(-evals) / sum(np.exp(-evals))
            predictions = np.argmax(softmax, axis=1)
            accuracy = np.sum(predictions == truth_vals) / len(truth_vals)
            self.buffer.addExtraInfo('accuracy', str(accuracy))
        timestr = time.strftime("%Y%m%d-%H%M%S")
        self.buffer.addExtraInfo("training-time", training_time)
        print("Finished Training")
        print("Accuracy: ", self.buffer.getInformation('accuracy'))
        print("Training Time: ", self.buffer.getInformation('training-time'))
        output_name = self.kwargs[
            'output'] + '.ab' if 'output' in self.kwargs else "trained-rbm-buffer-{}.ab".format(
                timestr)
        f = open(output_name, "w")
        f.write(str(self.buffer))
        f.close()
        return
Exemplo n.º 4
0
    def execute(self, inputParams):
        """
        This method is intended to be inherited by vqe and vqe_energy subclasses to allow algorithm-specific implementation.
        This superclass method adds extra information to the buffer and allows XACC settings options to be set before executing VQE.

        Parameters:
        inputParams : dictionary
                    a dictionary of input parameters obtained from .ini file

        return QPU Accelerator buffer

        Options used (obtained from inputParams):
            'qubit-map': map of logical qubits to physical qubits
            'n-execs': number of sampler executions of measurements
            'initial-parameters': list of initial parameters for the VQE algorithm

            'restart-from-file': AcceleratorDecorator option to allow restart of VQE algorithm
            'readout-error': AcceleratorDecorator option for readout-error mitigation

        """
        m = xacc.HeterogeneousMap()
        if 'shots' in inputParams:
            m.insert('shots', int(inputParams['shots']))
        if 'backend' in inputParams:
            m.insert('backend', inputParams['backend'])

        self.qpu = xacc.getAccelerator(inputParams['accelerator'], m)
        xaccOp = self.hamiltonian_generators[
            inputParams['hamiltonian-generator']].generate(inputParams)
        self.ansatz = self.ansatz_generators[inputParams['name']].generate(
            inputParams, xaccOp.nBits())
        if 'qubit-map' in inputParams:
            qubit_map = ast.literal_eval(inputParams['qubit-map'])
            xaccOp, self.ansatz, n_qubits = xaccvqe.mapToPhysicalQubits(
                xaccOp, self.ansatz, qubit_map)
        else:
            n_qubits = xaccOp.nBits()
        self.op = xaccOp
        self.n_qubits = n_qubits
        # create buffer, add some extra info (hamiltonian, ansatz-qasm, python-ansatz-qasm)
        self.buffer = xacc.qalloc(n_qubits)
        self.buffer.addExtraInfo('hamiltonian', self.op.toString())
        self.buffer.addExtraInfo(
            'ansatz-qasm',
            self.ansatz.toString().replace('\\n', '\\\\n'))
        pycompiler = xacc.getCompiler('pyxasm')
        # self.buffer.addExtraInfo('ansatz-qasm-py', '\n'.join(pycompiler.translate(self.ansatz).split('\n')[1:]))

        # heres where we can set up the algorithm Parameters
        # all versions of vqe require: Accelerator, Ansatz, Observable
        # pure-vqe requires Optimizer
        # energy calculation has optional Parameters - can be random
        self.vqe_options_dict = {
            'accelerator': self.qpu,
            'ansatz': self.ansatz,
            'observable': self.op
        }

        # get optimizers for VQE
        # needs to check if optimizer is a python plugin
        # if not, use nlopt (with options)
        # so we pull 'optimizer-options' out if available
        # Optimizer-options needs to be passed to BOTH XACC Core optimizers and to python plugins
        # vqe_options_dict is used to initialize the algorithms
        self.optimizer = None
        self.optimizer_options = {}
        if 'optimizer-options' in inputParams:
            self.optimizer_options = ast.literal_eval(
                inputParams['optimizer-options'])
        # initial-parameters for optimizer (vqe)
        # parameters for vqe-energy
        if 'initial-parameters' in inputParams:
            self.optimizer_options['initial-parameters'] = ast.literal_eval(
                inputParams['initial-parameters'])
        if 'parameters' in inputParams:
            self.optimizer_options['parameters'] = ast.literal_eval(
                inputParams['parameters'])
        if 'nlopt-maxeval' in inputParams:
            self.optimizer_options['nlopt-maxeval'] = int(
                inputParams['nlopt-maxeval'])

        # check to see if optimizer is a python plugin
        # if it is, we do not put it in self.vqe_options_dict
        # if it is not, it is put there
        if 'optimizer' in inputParams:
            if inputParams['optimizer'] in self.vqe_optimizers:
                self.optimizer = self.vqe_optimizers[inputParams['optimizer']]
            else:
                self.optimizer = xacc.getOptimizer(inputParams['optimizer'],
                                                   self.optimizer_options)
        else:
            self.optimizer = xacc.getOptimizer('nlopt', self.optimizer_options)
        # vqe.py then will check vqe_options_dict for optimizer; if it isn't there, run python optimizer
        # and of course if it is, we run with XACC
        self.buffer.addExtraInfo('accelerator', inputParams['accelerator'])

        # need to make sure the AcceleratorDecorators work correctly
        if 'n-execs' in inputParams:
            xacc.setOption('sampler-n-execs', inputParams['n-execs'])
            self.qpu = xacc.getAcceleratorDecorator('improved-sampling',
                                                    self.qpu)

        if 'restart-from-file' in inputParams:
            xacc.setOption('vqe-restart-file',
                           inputParams['restart-from-file'])
            self.qpu = xacc.getAcceleratorDecorator('vqe-restart', self.qpu)
            self.qpu.initialize()

        if 'readout-error' in inputParams and inputParams['readout-error']:
            self.qpu = xacc.getAcceleratorDecorator('ro-error', self.qpu)

        if 'rdm-purification' in inputParams and inputParams[
                'rdm-purification']:
            print("setting RDM Purification")
            self.qpu = xacc.getAcceleratorDecorator('rdm-purification',
                                                    self.qpu)
            m = xacc.HeterogeneousMap()
            m.insert('fermion-observable', self.op)
            self.qpu.initialize(m)

        self.vqe_options_dict = {
            'optimizer': self.optimizer,
            'accelerator': self.qpu,
            'ansatz': self.ansatz,
            'observable': self.op
        }

        xacc.setOptions(inputParams)
Exemplo n.º 5
0
    def analyze(self, buffer, inputParams):
        """
        This method is also to be inherited by vqe and vqe_energy subclasses to allow for algorithm-specific implementation.

        This superclass method always generates a .csv file with measured expectation values for each kernel and calculated energy of each iteration.

        Parameters:
        inputParams : dictionary
                    a dictionary of input parameters obtained from .ini file
        buffer : XACC AcceleratorBuffer
                AcceleratorBuffer containing VQE results to be analyzed

        Options used (in inputParams):
            'readout-error': generate .csv file with readout-error corrected expectation values and calculated energy for each kernel and iteration.
            'richardson-extrapolation': run Richardson-Extrapolation on the resulting Accelerator buffer (generating 4 more .csv files of expectation values and energies)
            'rich-extra-iter': the number of iterations of Richardson-Extrapolation
        """
        ps = buffer.getAllUnique('parameters')
        timestr = time.strftime("%Y%m%d-%H%M%S")
        exp_csv_name = "%s_%s_%s_%s" % (
            os.path.splitext(buffer.getInformation('file-name'))[0],
            buffer.getInformation('accelerator'), "exp_val_z", timestr)
        f = open(exp_csv_name + ".csv", 'w')
        exp_columns = [
            c.getInformation('kernel')
            for c in buffer.getChildren('parameters', ps[0])
        ] + ['<E>']
        f.write(str(exp_columns).replace('[', '').replace(']', '') + '\n')
        for p in ps:
            energy = 0.0
            for c in buffer.getChildren('parameters', p):
                exp = c.getInformation('exp-val-z')
                energy += exp * c.getInformation(
                    'coefficient') if c.hasExtraInfoKey('coefficient') else 0.0
                f.write(str(exp) + ',')
            f.write(str(energy) + '\n')
        f.close()
        if 'readout-error' in inputParams:
            ro_exp_csv_name = "%s_%s_%s_%s" % (
                os.path.splitext(buffer.getInformation('file-name'))[0],
                buffer.getInformation('accelerator'), "ro_fixed_exp_val_z",
                timestr)
            f = open(ro_exp_csv_name + '.csv', 'w')
            f.write(str(exp_columns).replace('[', '').replace(']', '') + '\n')
            for p in ps:
                energy = 0.0
                for c in buffer.getChildren('parameters', p):
                    exp = c.getInformation('ro-fixed-exp-val-z')
                    energy += exp * c.getInformation(
                        'coefficient') if c.hasExtraInfoKey(
                            'coefficient') else 0.0
                    f.write(str(exp) + ',')
                f.write(str(energy) + '\n')
            f.close()

        if 'richardson-extrapolation' in inputParams and inputParams[
                'richardson-extrapolation']:
            from scipy.optimize import curve_fit
            import numpy as np

            angles = buffer.getInformation('vqe-angles')
            qpu = self.vqe_options_dict['accelerator']
            self.vqe_options_dict[
                'accelerator'] = xacc.getAcceleratorDecorator(
                    'rich-extrap', qpu)
            self.vqe_options_dict['task'] = 'compute-energy'
            xaccOp = self.op
            self.vqe_options_dict['vqe-params'] = ','.join(
                [str(x) for x in angles])
            fileNames = {
                r: "%s_%s_%s_%s" %
                (os.path.splitext(buffer.getInformation('file-name'))[0],
                 buffer.getInformation('accelerator'), 'rich_extrap_' + str(r),
                 timestr) + '.csv'
                for r in [1, 3, 5, 7]
            }

            nRE_Execs = 2 if not 'rich-extrap-iter' in inputParams else int(
                inputParams['rich-extrap-iter'])
            if nRE_Execs < 2:
                print(
                    'Richardson Extrapolation needs more than 1 execution. Setting to 2.'
                )
                nRE_execs = 2

            for r in [1, 3, 5, 7]:
                f = open(fileNames[r], 'w')
                xacc.setOption('rich-extrap-r', r)

                for i in range(nRE_Execs):
                    richardson_buffer = qpu.createBuffer('q', self.n_qubits)
                    results = xaccvqe.execute(xaccOp, richardson_buffer,
                                              **self.vqe_options_dict)

                    ps = richardson_buffer.getAllUnique('parameters')
                    for p in ps:
                        f.write(str(p).replace('[', '').replace(']', ''))
                        energy = 0.0
                        for c in richardson_buffer.getChildren(
                                'parameters', p):
                            exp = c.getInformation(
                                'ro-fixed-exp-val-z') if c.hasExtraInfoKey(
                                    'ro-fixed-exp-val-z'
                                ) else c.getInformation('exp-val-z')
                            energy += exp * c.getInformation('coefficient')
                            f.write(',' + str(exp))
                        f.write(',' + str(energy) + '\n')
                f.close()

            nParams = len(ps[0])
            columns = ['t{}'.format(i) for i in range(nParams)]

            kernelNames = [
                c.getInformation('kernel')
                for c in buffer.getChildren('parameters', ps[0])
            ]
            columns += kernelNames
            columns.append('E')

            dat = [
                np.genfromtxt(fileNames[1], delimiter=',', names=columns),
                np.genfromtxt(fileNames[3], delimiter=',', names=columns),
                np.genfromtxt(fileNames[5], delimiter=',', names=columns),
                np.genfromtxt(fileNames[7], delimiter=',', names=columns)
            ]

            allExps = [{k: [] for k in kernelNames} for i in range(4)]
            allEnergies = []

            temp = {r: [] for r in range(4)}

            for i in range(nRE_Execs):
                for r in range(4):
                    for term in kernelNames:
                        allExps[r][term].append(dat[r][term][i])
                    temp[r].append(dat[r]['E'][i])

            evars = [np.std(temp[r]) for r in range(4)]
            xVals = [1, 3, 5, 7]

            avgExps = {
                k: [np.mean(allExps[r][k]) for r in range(4)]
                for k in kernelNames
            }
            varExps = {
                k: [np.std(allExps[r][k]) for r in range(4)]
                for k in kernelNames
            }
            energies = [np.mean(temp[r]) for r in range(4)]

            def linear(x, a, b):
                return a * x + b

            def exp(x, a, b):
                return a * np.exp(b * x)  # + b

            def quad(x, a, b, c):
                return a * x * x + b * x + c

            print('\nnoisy energy: ', energies[0], '+-', evars[0])

            res = curve_fit(linear,
                            xVals,
                            energies, [1, energies[0]],
                            sigma=evars)
            print('\nrich linear extrap: ', res[0][1], '+- ',
                  np.sqrt(np.diag(res[1])[1]))

            res_exp = curve_fit(exp, xVals, energies, [0, 0], sigma=evars)
            print('\nrich exp extrap: ', exp(0, res_exp[0][0], res_exp[0][1]),
                  '+-', np.sqrt(np.diag(res_exp[1])[1]))

            res_q = curve_fit(quad, xVals, energies, [0, 0, 0], sigma=evars)
            print("\nrich quad extrap: ",
                  quad(0, res_q[0][0], res_q[0][1], res_q[0][2]), "+-",
                  np.sqrt(np.diag(res_q[1])[2]))
Exemplo n.º 6
0
    def execute(self, inputParams):
        """
        This method is intended to be inherited by vqe and vqe_energy subclasses to allow algorithm-specific implementation.
        This superclass method adds extra information to the buffer and allows XACC settings options to be set before executing VQE.

        Parameters:
        inputParams : dictionary
                    a dictionary of input parameters obtained from .ini file

        return QPU Accelerator buffer

        Options used (obtained from inputParams):
            'qubit-map': map of logical qubits to physical qubits
            'n-execs': number of sampler executions of measurements
            'initial-parameters': list of initial parameters for the VQE algorithm

            'restart-from-file': AcceleratorDecorator option to allow restart of VQE algorithm
            'readout-error': AcceleratorDecorator option for readout-error mitigation

        """
        self.qpu = xacc.getAccelerator(inputParams['accelerator'])
        xaccOp = self.hamiltonian_generators[
            inputParams['hamiltonian-generator']].generate(inputParams)
        self.ansatz = self.ansatz_generators[inputParams['name']].generate(
            inputParams, xaccOp.nQubits())
        if 'qubit-map' in inputParams:
            qubit_map = ast.literal_eval(inputParams['qubit-map'])
            xaccOp, self.ansatz, n_qubits = xaccvqe.mapToPhysicalQubits(
                xaccOp, self.ansatz, qubit_map)
        else:
            n_qubits = xaccOp.nQubits()
        self.op = xaccOp
        self.n_qubits = n_qubits
        self.buffer = self.qpu.createBuffer('q', n_qubits)
        self.buffer.addExtraInfo('hamiltonian', str(xaccOp))
        self.buffer.addExtraInfo(
            'ansatz-qasm',
            self.ansatz.toString('q').replace('\\n', '\\\\n'))
        pycompiler = xacc.getCompiler('xacc-py')
        self.buffer.addExtraInfo(
            'ansatz-qasm-py',
            '\n'.join(pycompiler.translate('q', self.ansatz).split('\n')[1:]))
        self.optimizer = None
        self.optimizer_options = {}
        if 'optimizer' in inputParams:
            if inputParams['optimizer'] in self.vqe_optimizers:
                self.optimizer = self.vqe_optimizers[inputParams['optimizer']]
                if 'method' in inputParams:
                    self.optimizer_options['method'] = inputParams['method']
                if 'options' in inputParams:
                    self.optimizer_options['options'] = ast.literal_eval(
                        inputParams['options'])
                if 'user-params' in inputParams:
                    self.optimizer_options['options'][
                        'user_params'] = ast.literal_eval(
                            inputParams['user-params'])
            else:
                xacc.setOption('vqe-backend', inputParams['optimizer'])
        else:
            xacc.info(
                "No classical optimizer specified. Setting to default XACC optimizer."
            )

        self.buffer.addExtraInfo('accelerator', inputParams['accelerator'])
        if 'n-execs' in inputParams:
            xacc.setOption('sampler-n-execs', inputParams['n-execs'])
            self.qpu = xacc.getAcceleratorDecorator('improved-sampling',
                                                    self.qpu)

        if 'restart-from-file' in inputParams:
            xacc.setOption('vqe-restart-file',
                           inputParams['restart-from-file'])
            self.qpu = xacc.getAcceleratorDecorator('vqe-restart', self.qpu)
            self.qpu.initialize()

        if 'readout-error' in inputParams and inputParams['readout-error']:
            self.qpu = xacc.getAcceleratorDecorator('ro-error', self.qpu)

        if 'rdm-purification' in inputParams and inputParams[
                'rdm-purification']:
            self.qpu = xacc.getAcceleratorDecorator('rdm-purification',
                                                    self.qpu)

        self.vqe_options_dict = {
            'accelerator': self.qpu,
            'ansatz': self.ansatz
        }

        if 'initial-parameters' in inputParams:
            self.vqe_options_dict['vqe-params'] = ','.join([
                str(x)
                for x in ast.literal_eval(inputParams['initial-parameters'])
            ])

        xacc.setOptions(inputParams)
Exemplo n.º 7
0
from xaccvqe import PauliOperator

xacc.Initialize(['--compiler', 'quil'])

#ibm = xacc.getAccelerator('ibm')
tnqvm = xacc.getAccelerator('tnqvm')

buffer = tnqvm.createBuffer('q', 2)

ham = PauliOperator(5.906709445) + \
        PauliOperator({0:'X',1:'X'}, -2.1433) + \
        PauliOperator({0:'Y',1:'Y'}, -2.1433) + \
        PauliOperator({0:'Z'}, .21829) + \
        PauliOperator({1:'Z'}, -6.125)

xacc.setOption('ibm-shots', '8192')
#xacc.setOption('vqe-backend','vqe-bayesopt')
#xacc.setOption('bo-n-iter','20')


@xaccvqe.qpu.vqe(accelerator=tnqvm, observable=ham)
def ansatz(buffer, t0):
    X(0)
    Ry(t0, 1)
    CNOT(1, 0)


# Run VQE with given ansatz kernel
initAngle = .5

ansatz(buffer, initAngle)
import xaccvqe
from xaccvqe import PauliOperator
import numpy as np

xacc.Initialize()

tnqvm = xacc.getAccelerator('tnqvm')
buffer = tnqvm.createBuffer('q', 2)

ham = PauliOperator(5.906709445) + \
        PauliOperator({0:'X',1:'X'}, -2.1433) + \
        PauliOperator({0:'Y',1:'Y'}, -2.1433) + \
        PauliOperator({0:'Z'}, .21829) + \
        PauliOperator({1:'Z'}, -6.125)

xacc.setOption('itensor-svd-cutoff', '1e-16')


# Hardware Efficient Ansatz xacc kernel
@xaccvqe.qpu.energy(accelerator=tnqvm, observable=ham)
def ansatz(buffer, *args):
    xacc(hwe, layers=2, n_qubits=2, connectivity='[[0,1]]')


# XACC Kernels can display number of required nParameters
# and be persisted to qasm string
print(ansatz.nParameters())
print(ansatz.getFunction().toString('q'))

# Generate an initial random set of vqe params
# of the correct number of parameters and execute