Exemplo n.º 1
0
    def start_tick(self):
        """Start the next tick."""
        config = get_config()
        lid_rank = config.lid_rank
        pid_prog_rank = config.pid_prog_rank
        visit_schema = config.visit_schema
        state_schema = config.state_schema

        current_state_df = self.behavior_model.next_state_df
        visit_df = self.behavior_model.next_visit_df

        LOG.debug("BehaviorActor: Sending out visit batches to LocationActor")
        df_scatter(
            visit_df,
            "lid",
            lid_rank,
            asys.ranks(),
            visit_schema,
            LOC_AID,
            "visit",
        )

        LOG.debug(
            "BehaviorActor: Sending out current state batches to ProgressionActor"
        )
        df_scatter(
            current_state_df,
            "pid",
            pid_prog_rank,
            asys.ranks(),
            state_schema,
            PROG_AID,
            "current_state",
        )
Exemplo n.º 2
0
    def try_run_behavior_model(self):
        """Try running the behavior model."""
        if len(self.visit_output_batches) < len(asys.ranks()):
            return
        if len(self.new_state_batches) < len(asys.ranks()):
            return

        LOG.debug("BehaviorActor: Running behavior model")
        self.run_behavior_model()
Exemplo n.º 3
0
    def pong(self):
        self.workers_done += 1
        if self.workers_done == len(xa.ranks()):
            self.end = time()

            print("n_ranks: %d" % len(xa.ranks()))
            print("n_nodes: %d" % len(xa.nodes()))

            runtime = (self.end - self.start)
            print("runtime: %e" % runtime)

            xa.stop()
Exemplo n.º 4
0
    def maybe_stop(self):
        if self.num_consumer_done == len(xa.ranks()):
            self.end = time()

            print("n_sent: %d" % self.objects_sent)
            print("n_received: %d" % self.objects_received)

            print("n_ranks: %d" % len(xa.ranks()))
            print("n_nodes: %d" % len(xa.nodes()))

            runtime = (self.end - self.start)
            print("runtime: %e" % runtime)

            xa.stop()
Exemplo n.º 5
0
    def __init__(self, store_proxies, coordinator_aid, runner_aid):
        """Initialize the runner.

        Parameters
        ----------
        store_proxies : dict [str -> ActorProxy]
            Actor proxy objects to stores
        coordinator_aid : str
            ID of the coordinator actor
        runner_aid : str
            ID of the runner actors
        """
        self.local_agents = {}
        self.store_proxies = store_proxies
        self.coordinator_proxy = asys.ActorProxy(asys.MASTER_RANK,
                                                 coordinator_aid)
        self.every_runner_proxy = asys.ActorProxy(asys.EVERY_RANK, runner_aid)
        self.runner_proxies = [
            asys.ActorProxy(rank, runner_aid) for rank in asys.ranks()
        ]

        # Step variables
        self.timestep = None
        self.flag_create_agent_done = None
        self.flag_move_agents_done = None
        self.num_receive_agent_done = None

        self._prepare_for_next_step()
Exemplo n.º 6
0
    def try_compute_prgression_output(self):
        """Try to run compute_progression_output."""
        if len(self.current_state_batches) < len(self.behav_ranks):
            return
        if len(self.visit_output_batches) < len(asys.ranks()):
            return

        self.compute_progression_output()
Exemplo n.º 7
0
    def __init__(self, per_node_behavior, java_behavior):
        """Initialize."""
        nodes = list(asys.nodes())
        current_rank = asys.current_rank()
        current_node = [
            node for node in nodes if current_rank in asys.node_ranks(node)
        ]
        current_node = current_node[0]
        current_node_index = nodes.index(current_node)
        os.environ["CURRENT_NODE"] = str(current_node_index)

        self.per_node_behavior = per_node_behavior
        self.java_behavior = java_behavior

        self.seed = int(os.environ["SEED"])
        self.tick_time = int(os.environ["TICK_TIME"])
        self.attr_names = os.environ["VISUAL_ATTRIBUTES"].strip().split(",")

        self.disease_model = DiseaseModel(os.environ["DISEASE_MODEL_FILE"])

        self.visit_schema = make_visit_schema(self.attr_names)
        self.visit_output_schema = make_visit_output_schema(self.attr_names)
        self.state_schema = make_state_schema()

        self.empty_visit_df = self.visit_schema.empty_table().to_pandas()
        self.empty_visit_output_df = self.visit_output_schema.empty_table(
        ).to_pandas()
        self.empty_state_df = self.state_schema.empty_table().to_pandas()

        lid_part_file = os.environ["LID_PARTITION"]
        pid_part_file = os.environ["PID_PARTITION"]

        lid_part_df = pd.read_csv(lid_part_file)
        pid_part_df = pd.read_csv(pid_part_file)

        self.lid_rank = {}
        for lid, node, cpu in lid_part_df.itertuples(index=False, name=None):
            self.lid_rank[lid] = node_rank(node, cpu)

        self.pid_prog_rank = {}
        self.pid_behav_rank = {}
        for pid, node, cpu in pid_part_df.itertuples(index=False, name=None):
            self.pid_prog_rank[pid] = node_rank(node, cpu)
            if per_node_behavior:
                self.pid_behav_rank[pid] = node_rank(node, 0)
            else:
                self.pid_behav_rank[pid] = node_rank(node, cpu)

        if per_node_behavior:
            self.behav_ranks = [
                asys.node_ranks(node)[0] for node in asys.nodes()
            ]
        else:
            self.behav_ranks = asys.ranks()
Exemplo n.º 8
0
    def main(self):
        # Create a greeter on very rank.
        greeter_id = "greeter"
        for rank in xa.ranks():
            xa.create_actor(rank, greeter_id, Greeter)

        # Send the greeters the greet message.
        every_greeter = xa.ActorProxy(xa.EVERY_RANK, greeter_id)
        every_greeter.greet("world", send_immediate=True)

        # We are done now.
        xa.stop()
Exemplo n.º 9
0
    def main(self):
        source_rank = 0
        sink_rank = 1
        shape = (100, 100)

        source = xa.ActorProxy(source_rank, "source")
        sink = xa.ActorProxy(sink_rank, "sink")
        workers = {r: xa.ActorProxy(r, "worker") for r in xa.ranks() if r > 1}

        n = len(workers)

        source.create_actor_(Source, n, shape, workers)
        sink.create_actor_(Sink, n)
        for worker in workers.values():
            worker.create_actor_(Worker, source, sink)
Exemplo n.º 10
0
    def produce(self):
        objects_sent = 0

        n_messages = random.randint(MIN_NUM, MAX_NUM)
        for _ in range(n_messages):
            rank = random.choice(xa.ranks())

            msg_size = random.randint(MIN_SIZE, MAX_SIZE)
            objects_sent += msg_size

            msg = list(range(msg_size))
            self.consumer[rank].consume(msg)
            #print("Sent %d objects to %d" % (len(msg), rank))

        self.every_consumer.producer_done()
        self.main.producer_done(objects_sent)
Exemplo n.º 11
0
    def main(self):
        """Run the simulation."""
        for rank in asys.ranks():
            asys.create_actor(
                rank,
                CONFIG_AID,
                ConfigActor,
                per_node_behavior=self.per_node_behavior,
                java_behavior=self.java_behavior,
            )
            asys.create_actor(rank, LOC_AID, LocationActor)
            asys.create_actor(rank, PROG_AID, ProgressionActor)

        for rank in self.behav_ranks:
            asys.create_actor(rank, BEHAV_AID, BehaviorActor)

        LOG.info("MainActor: Starting tick %d", self.cur_tick)
        for rank in self.behav_ranks:
            asys.ActorProxy(rank, BEHAV_AID).start_tick()
Exemplo n.º 12
0
    def __init__(self):
        """Initialize."""
        self.num_ticks = int(os.environ["NUM_TICKS"])
        self.output_file = os.environ["OUTPUT_FILE"]
        self.per_node_behavior = bool(
            int(os.environ.get("PER_NODE_BEHAVIOR", "0")))
        self.java_behavior = int(os.environ.get("JAVA_BEHAVIOR", "0"))
        if self.java_behavior:
            self.per_node_behavior = True

        self.epicurve_parts = []
        self.cur_tick = 0

        self.tick_epicurve = []

        if self.per_node_behavior:
            self.behav_ranks = [
                asys.node_ranks(node)[0] for node in asys.nodes()
            ]
        else:
            self.behav_ranks = asys.ranks()
Exemplo n.º 13
0
    def compute_visit_output(self):
        """Compute the visit outputs."""
        config = get_config()
        disease_model = config.disease_model
        attr_names = config.attr_names
        pid_prog_rank = config.pid_prog_rank
        visit_output_schema = config.visit_output_schema

        visit_df = [
            unserialize_df(batch) for batch in self.visit_batches
            if batch is not None
        ]
        if visit_df:
            visit_df = pd.concat(visit_df, axis=0)
        else:
            visit_df = get_config().empty_visit_df

        visit_outputs = defaultdict(list)
        for lid, group in visit_df.groupby("lid"):
            visit_output = disease_model.compute_visit_output(
                group, attr_names, lid)
            for k, v in visit_output.items():
                visit_outputs[k].append(v)
        visit_outputs.default_factory = None
        visit_outputs = {k: np.hstack(vs) for k, vs in visit_outputs.items()}
        visit_output_df = pd.DataFrame(visit_outputs)

        LOG.debug("LocationActor: Sending visit output to ProgressionActor")
        df_scatter(
            visit_output_df,
            "pid",
            pid_prog_rank,
            asys.ranks(),
            visit_output_schema,
            PROG_AID,
            "visit_output",
        )

        self.visit_batches = []
Exemplo n.º 14
0
    def __init__(self, balancer, simulator_aid, runner_aid, summary_writer_aid=None):
        """Initialize.

        Parameters
        ----------
        balancer: LoadBalancer
            The agent load balancer
        simulator_aid : str
            The ID of the simulator actor
        runner_aid : str
            The ID of the runner actors
        summary_writer_aid : str
            The ID of the local summary writer actor
        """
        self.balancer = balancer
        self.simulator_proxy = asys.ActorProxy(asys.MASTER_RANK, simulator_aid)
        self.runner_proxies = [
            asys.ActorProxy(rank, runner_aid) for rank in asys.ranks()
        ]
        self.every_runner_proxy = asys.ActorProxy(asys.EVERY_RANK, runner_aid)
        self.summary_writer_aid = summary_writer_aid

        self.num_agents_created = 0
        self.num_agents_died = 0

        # Step variables
        self.timestep = None
        self.agent_constructor = None
        self.flag_create_agent_done = None
        self.num_agent_step_profile_done = None
        self.rank_step_time = None
        self.rank_memory_usage = None
        self.rank_n_updates = None
        self.agent_step_time = None
        self.agent_memory_usage = None
        self.agent_n_updates = None
        self.balancing_time = None

        self._prepare_for_next_step()
Exemplo n.º 15
0
def main():
    if len(xa.ranks()) != 2:
        print("This program must be run with exactly 2 ranks.")
        sys.exit(1)
    xa.start("main", Main)
Exemplo n.º 16
0
 def __init__(self):
     self.main = xa.ActorProxy(xa.MASTER_RANK, "main")
     self.consumer = [
         xa.ActorProxy(rank, "consumer") for rank in xa.ranks()
     ]
     self.every_consumer = xa.ActorProxy(xa.EVERY_RANK, "consumer")
Exemplo n.º 17
0
def main():
    if len(xa.ranks()) < 3:
        print("This program must be run with 3 or more ranks.")
        sys.exit(1)
    xa.start("main", Main)
Exemplo n.º 18
0
"""The Matrix ABM."""

import logging
import xactor as asys

INFO_FINE = logging.INFO - 1
WORLD_SIZE = len(asys.ranks())

from .datatypes import Timestep, Constructor, StateUpdate

from .agent import Agent, AgentPopulation
from .simulator import Simulator
from .coordinator import Coordinator
from .runner import Runner

from .timestep_generator import TimestepGenerator, RangeTimestepGenerator
from .state_store import StateStore, SQLite3Store
from .load_balancer import RandomLoadBalancer, GreedyLoadBalancer
from .resource_manager import SQLite3Manager, TensorboardWriter