Exemplo n.º 1
0
 def test_concat(self, tmpdir_factory, bout_xyt_example_files):
     path1 = bout_xyt_example_files(tmpdir_factory, nxpe=3, nype=4, nt=1)
     bd1 = open_boutdataset(datapath=path1, inputfilepath=None,
                            keep_xboundaries=False)
     path2 = bout_xyt_example_files(tmpdir_factory, nxpe=3, nype=4, nt=1)
     bd2 = open_boutdataset(datapath=path2, inputfilepath=None,
                            keep_xboundaries=False)
     result = concat([bd1, bd2], dim='run')
     assert result.dims == {**bd1.dims, 'run': 2}
Exemplo n.º 2
0
    def test_remove_yboundaries(
        self, bout_xyt_example_files, mxg, myg, remove_extra_upper
    ):
        dataset_list, grid_ds = bout_xyt_example_files(
            None,
            lengths=(2, 3, 4, 3),
            nxpe=1,
            nype=6,
            nt=1,
            grid="grid",
            guards={"x": mxg, "y": myg},
            topology="connected-double-null",
            syn_data_type="linear",
        )

        ds = open_boutdataset(
            datapath=dataset_list,
            gridfilepath=grid_ds,
            geometry="toroidal",
            keep_yboundaries=True,
        )

        dataset_list_no_yboundaries, grid_ds_no_yboundaries = bout_xyt_example_files(
            None,
            lengths=(2, 3, 4, 3),
            nxpe=1,
            nype=6,
            nt=1,
            grid="grid",
            guards={"x": mxg, "y": 0},
            topology="connected-double-null",
            syn_data_type="linear",
        )

        ds_no_yboundaries = open_boutdataset(
            datapath=dataset_list_no_yboundaries,
            gridfilepath=grid_ds_no_yboundaries,
            geometry="toroidal",
            keep_yboundaries=False,
        )

        if remove_extra_upper:
            ds_no_yboundaries = xr.concat(
                [
                    ds_no_yboundaries.isel(theta=slice(None, 11)),
                    ds_no_yboundaries.isel(theta=slice(12, -1)),
                ],
                dim="theta",
            )

        n = ds["n"].bout.remove_yboundaries(remove_extra_upper=remove_extra_upper)

        assert n.metadata["keep_yboundaries"] == 0
        npt.assert_equal(n.values, ds_no_yboundaries["n"].values)
Exemplo n.º 3
0
    def test_getFieldAligned(self, tmpdir_factory, bout_xyt_example_files):
        path = bout_xyt_example_files(tmpdir_factory, nxpe=3, nype=4, nt=1)
        ds = open_boutdataset(datapath=path, inputfilepath=None, keep_xboundaries=False)

        ds['psixy'] = ds['x']
        ds['Rxy'] = ds['x']
        ds['Zxy'] = ds['y']

        ds = apply_geometry(ds, 'toroidal')

        n = ds['n']
        n.attrs['direction_y'] = 'Standard'
        n_aligned_from_array = n.bout.toFieldAligned()

        # check n_aligned does not exist yet
        try:
            ds['n_aligned']
            assert False
        except KeyError:
            pass

        n_aligned_from_ds = ds.bout.getFieldAligned('n')
        xrt.assert_allclose(n_aligned_from_ds, n_aligned_from_array)
        xrt.assert_allclose(ds['n_aligned'], n_aligned_from_array)

        # check getting the cached version
        ds['n_aligned'] = ds['T']
        xrt.assert_allclose(ds.bout.getFieldAligned('n'), ds['T'])
Exemplo n.º 4
0
    def test_single_file(self, tmp_path_factory):

        # Create temp directory for files
        test_dir = tmp_path_factory.mktemp("test_data")

        # Generate some test data
        generated_ds = create_bout_ds(syn_data_type="linear")
        generated_ds.to_netcdf(test_dir.joinpath("BOUT.dmp.0.nc"))

        var = "n"
        expected = old_collect(var, path=test_dir, xguards=True, yguards=False)

        # Test against new standard - open_boutdataset
        with pytest.warns(UserWarning):
            ds = open_boutdataset(test_dir.joinpath("BOUT.dmp.0.nc"))
        actual = ds[var].values

        assert expected.shape == actual.shape
        npt.assert_equal(actual, expected)

        # Test against backwards compatible collect function
        actual = new_collect(var, path=test_dir, xguards=True, yguards=False)

        assert expected.shape == actual.shape
        npt.assert_equal(actual, expected)
Exemplo n.º 5
0
 def test_isel(self, tmpdir_factory, bout_xyt_example_files):
     path = bout_xyt_example_files(tmpdir_factory, nxpe=1, nype=1, nt=1)
     bd = open_boutdataset(datapath=path, inputfilepath=None,
                           keep_xboundaries=False)
     actual = bd.isel(x=slice(None,None,2))
     expected = bd.bout.data.isel(x=slice(None,None,2))
     xrt.assert_equal(actual, expected)
Exemplo n.º 6
0
    def test_ddy(self, bout_xyt_example_files):

        ny = 64

        dataset_list, gridfilepath = bout_xyt_example_files(
            None,
            lengths=(2, 3, ny, 4),
            nxpe=1,
            nype=1,
            grid="grid",
        )

        ds = open_boutdataset(
            datapath=dataset_list, geometry="toroidal", gridfilepath=gridfilepath
        )

        n = ds["n"]

        t = ds["t"].broadcast_like(n)
        x = ds["x"].broadcast_like(n)
        y = ds["theta"].broadcast_like(n)
        z = ds["zeta"].broadcast_like(n)

        n.values[:] = (np.sin(3.0 * y / ny) * (1.0 + t + x + z)).values

        expected = 3.0 / ny * np.cos(3.0 * y / ny) * (1.0 + t + x + z)

        npt.assert_allclose(
            n.bout.ddy().isel(theta=slice(1, -1)).values,
            expected.isel(theta=slice(1, -1)).values,
            rtol=1.0e-2,
            atol=1.0e-13,
        )
Exemplo n.º 7
0
    def test_ddz(self, bout_xyt_example_files):
        dataset_list = bout_xyt_example_files(
            None,
            lengths=(2, 3, 4, 64),
            nxpe=1,
            nype=1,
        )

        with pytest.warns(UserWarning):
            ds = open_boutdataset(
                datapath=dataset_list,
            )

        n = ds["n"]

        t = ds["t"].broadcast_like(n)
        x = ds["x"].broadcast_like(n)
        y = ds["y"].broadcast_like(n)
        z = ds["z"].broadcast_like(n)

        n.values[:] = (np.sin(z) * (1.0 + t + x + y)).values

        expected = np.cos(z) * (1.0 + t + x + y)

        npt.assert_allclose(
            n.bout.ddz().values, expected.values, rtol=1.0e-2, atol=1.0e-13
        )
Exemplo n.º 8
0
    def test_ddx(self, bout_xyt_example_files):

        nx = 64

        dataset_list = bout_xyt_example_files(
            None,
            lengths=(2, nx, 4, 3),
            nxpe=1,
            nype=1,
        )

        with pytest.warns(UserWarning):
            ds = open_boutdataset(
                datapath=dataset_list,
            )

        n = ds["n"]

        t = ds["t"].broadcast_like(n)
        ds["x_1d"] = _1d_coord_from_spacing(ds["dx"], "x")
        x = ds["x_1d"].broadcast_like(n)
        y = ds["y"].broadcast_like(n)
        z = ds["z"].broadcast_like(n)

        n.values[:] = (np.sin(12.0 * x / nx) * (1.0 + t + y + z)).values

        expected = 12.0 / nx * np.cos(12.0 * x / nx) * (1.0 + t + y + z)

        npt.assert_allclose(
            n.bout.ddx().isel(x=slice(1, -1)).values,
            expected.isel(x=slice(1, -1)).values,
            rtol=1.0e-2,
            atol=1.0e-13,
        )
Exemplo n.º 9
0
    def test_interpolate_parallel_toroidal_points_list(self, bout_xyt_example_files):
        dataset_list, grid_ds = bout_xyt_example_files(
            None,
            lengths=(2, 3, 16, 3),
            nxpe=1,
            nype=3,
            nt=1,
            grid="grid",
            guards={"y": 2},
            topology="single-null",
        )

        ds = open_boutdataset(
            datapath=dataset_list,
            gridfilepath=grid_ds,
            geometry="toroidal",
            keep_yboundaries=True,
        )

        n_highres = ds["n"].bout.interpolate_parallel()

        points_list = [1, 2]

        n_highres_truncated = ds["n"].bout.interpolate_parallel(
            toroidal_points=points_list
        )

        xrt.assert_identical(n_highres_truncated, n_highres.isel(zeta=points_list))
Exemplo n.º 10
0
    def test_multiple_files_along_y(self, tmp_path_factory):

        # Create temp directory for files
        test_dir = tmp_path_factory.mktemp("test_data")

        # Generate some test data
        ds_list, file_list = create_bout_ds_list("BOUT.dmp",
                                                 nxpe=1,
                                                 nype=3,
                                                 syn_data_type="linear")
        for temp_ds, file_name in zip(ds_list, file_list):
            temp_ds.to_netcdf(test_dir.joinpath(file_name))

        var = "n"
        expected = old_collect(var,
                               path=test_dir,
                               prefix="BOUT.dmp",
                               xguards=True)

        # Test against new standard - .open_boutdataset
        with pytest.warns(UserWarning):
            ds = open_boutdataset(test_dir.joinpath("BOUT.dmp.*.nc"))
        actual = ds[var].values

        assert expected.shape == actual.shape
        npt.assert_equal(actual, expected)

        # Test against backwards compatible collect function
        actual = new_collect(var,
                             path=test_dir,
                             prefix="BOUT.dmp",
                             xguards=True)

        assert expected.shape == actual.shape
        npt.assert_equal(actual, expected)
Exemplo n.º 11
0
    def test_storm_dataset_inheritance(self, tmpdir_factory,
                                       bout_xyt_example_files):
        path = bout_xyt_example_files(tmpdir_factory, nxpe=1, nype=1, nt=1)
        ds = open_boutdataset(datapath=path, inputfilepath=None)
        ds.storm.set_extra_data('options')
        print(ds.storm.extra_data)

        assert False
Exemplo n.º 12
0
    def test_object_permanence(self, tmpdir_factory, bout_xyt_example_files):
        path = bout_xyt_example_files(tmpdir_factory, nxpe=1, nype=1, nt=1)
        ds = open_boutdataset(datapath=path, inputfilepath=None)

        ds.storm.extra_info = 'options'
        new_ds = ds.isel(t=-1)
        print(new_ds.storm.extra_info)

        assert False
Exemplo n.º 13
0
    def test_to_dataset(self, tmpdir_factory, bout_xyt_example_files):
        path = bout_xyt_example_files(tmpdir_factory, nxpe=3, nype=4, nt=1)
        ds = open_boutdataset(datapath=path,
                              inputfilepath=None,
                              keep_xboundaries=False)
        da = ds['n']

        new_ds = da.bout.to_dataset()

        assert dict_equiv(ds.attrs, new_ds.attrs)
        assert dict_equiv(ds.metadata, new_ds.metadata)
Exemplo n.º 14
0
    def test_to_dataset(self, bout_xyt_example_files):
        dataset_list = bout_xyt_example_files(None, nxpe=3, nype=4, nt=1)
        with pytest.warns(UserWarning):
            ds = open_boutdataset(
                datapath=dataset_list, inputfilepath=None, keep_xboundaries=False
            )
        da = ds["n"]

        new_ds = da.bout.to_dataset()

        assert dict_equiv(ds.attrs, new_ds.attrs)
        assert dict_equiv(ds.metadata, new_ds.metadata)
Exemplo n.º 15
0
    def test_interpolate_parallel(self, bout_xyt_example_files):
        dataset_list, grid_ds = bout_xyt_example_files(
            None,
            lengths=(2, 3, 16, 3),
            nxpe=1,
            nype=3,
            nt=1,
            grid="grid",
            guards={"y": 2},
            topology="single-null",
        )

        ds = open_boutdataset(
            datapath=dataset_list,
            gridfilepath=grid_ds,
            geometry="toroidal",
            keep_yboundaries=True,
        )

        n = ds["n"]

        thetalength = 2.0 * np.pi

        dtheta = thetalength / 48.0
        theta = xr.DataArray(
            np.linspace(0.0 - 1.5 * dtheta, thetalength + 1.5 * dtheta, 52),
            dims="theta",
        )

        dtheta_fine = thetalength / 3.0 / 128.0
        theta_fine = xr.DataArray(
            np.linspace(
                0.0 + 0.5 * dtheta_fine, thetalength - 0.5 * dtheta_fine, 3 * 128
            ),
            dims="theta",
        )
        x = xr.DataArray(np.arange(3), dims="x")

        def f_y(t):
            t = np.sin(3.0 * t)
            return t ** 3 - t ** 2 + t - 1.0

        f = f_y(theta) * (x + 1.0)

        n.data = f.broadcast_like(n)

        f_fine = f_y(theta_fine) * (x + 1.0)

        n_highres = n.bout.interpolate_parallel().isel(theta=slice(2, -2))

        expected = f_fine.broadcast_like(n_highres)

        npt.assert_allclose(n_highres.values, expected.values, rtol=0.0, atol=1.1e-2)
Exemplo n.º 16
0
    def test_interpolate_parallel_region_core_change_n(
        self, bout_xyt_example_files, res_factor
    ):
        dataset_list, grid_ds = bout_xyt_example_files(
            None,
            lengths=(2, 3, 16, 3),
            nxpe=1,
            nype=1,
            nt=1,
            grid="grid",
            guards={"y": 2},
            topology="core",
        )

        ds = open_boutdataset(
            datapath=dataset_list,
            gridfilepath=grid_ds,
            geometry="toroidal",
            keep_yboundaries=True,
        )

        n = ds["n"]

        thetalength = 2.0 * np.pi

        dtheta = thetalength / 16.0
        theta = xr.DataArray(
            np.linspace(0.0 - 1.5 * dtheta, thetalength + 1.5 * dtheta, 20),
            dims="theta",
        )

        dtheta_fine = thetalength / res_factor / 16.0
        theta_fine = xr.DataArray(
            np.linspace(
                0.0 + dtheta_fine / 2.0,
                thetalength - dtheta_fine / 2.0,
                res_factor * 16,
            ),
            dims="theta",
        )

        def f(t):
            t = np.sin(t)
            return t ** 3 - t ** 2 + t - 1.0

        n.data = f(theta).broadcast_like(n)

        n_highres = n.bout.interpolate_parallel("core", n=res_factor)

        expected = f(theta_fine).broadcast_like(n_highres)

        npt.assert_allclose(n_highres.values, expected.values, rtol=0.0, atol=1.0e-2)
Exemplo n.º 17
0
    def test_from_field_aligned_staggered(self, bout_xyt_example_files, stag_location):
        dataset_list = bout_xyt_example_files(
            None, lengths=(3, 3, 4, 8), nxpe=1, nype=1, nt=1
        )
        with pytest.warns(UserWarning):
            ds = open_boutdataset(
                datapath=dataset_list, inputfilepath=None, keep_xboundaries=False
            )

        ds["psixy"] = ds["x"]
        ds["Rxy"] = ds["x"]
        ds["Zxy"] = ds["y"]

        ds = apply_geometry(ds, "toroidal")

        # set up test variable
        n = ds["n"].load()
        zShift = ds["zShift"].load()
        for t in range(ds.sizes["t"]):
            for x in range(ds.sizes["x"]):
                for y in range(ds.sizes["theta"]):
                    zShift[x, y] = (
                        (x * ds.sizes["theta"] + y) * 2.0 * np.pi / ds.sizes["zeta"]
                    )
                    for z in range(ds.sizes["zeta"]):
                        n[t, x, y, z] = 1000.0 * t + 100.0 * x + 10.0 * y + z
        n.attrs["direction_y"] = "Aligned"
        ds["T"].attrs["direction_y"] = "Aligned"

        n_nal = n.bout.from_field_aligned().copy(deep=True)

        assert n_nal.direction_y == "Standard"

        # make 'n' staggered
        ds["n"].attrs["cell_location"] = stag_location

        if stag_location != "CELL_ZLOW":
            with pytest.raises(ValueError):
                # Check exception raised when needed zShift_CELL_*LOW is not present
                ds["n"].bout.from_field_aligned()
            ds["zShift_" + stag_location] = zShift
            ds["zShift_" + stag_location].attrs["cell_location"] = stag_location
            ds = ds.set_coords("zShift_" + stag_location)
            ds = ds.drop_vars("zShift")

            with pytest.raises(ValueError):
                # Check shifting non-staggered field fails without zShift
                ds["T"].bout.from_field_aligned()

        n_stag_nal = ds["n"].bout.from_field_aligned()

        npt.assert_equal(n_stag_nal.values, n_nal.values)
Exemplo n.º 18
0
def create_test_file(tmpdir_factory):

    # Create temp dir for output of animate1D/2D
    save_dir = tmpdir_factory.mktemp("test_data")

    # Generate some test data
    ds_list, file_list = create_bout_ds_list("BOUT.dmp", nxpe=3, nype=3,
                                             syn_data_type="linear")
    for ds, file_name in zip(ds_list, file_list):
        ds.to_netcdf(str(save_dir.join(str(file_name))))

    ds = open_boutdataset(save_dir.join("BOUT.dmp.*.nc"))  # Open test data

    return save_dir, ds
Exemplo n.º 19
0
    def test_test_method(self, tmpdir_factory, bout_xyt_example_files):
        path = bout_xyt_example_files(tmpdir_factory, nxpe=1, nype=1, nt=1)
        ds = open_boutdataset(datapath=path, inputfilepath=None)
        #ds = collect(path=path)
        #bd = BoutAccessor(ds)
        print(ds)
        #ds.bout.test_method()
        #print(ds.bout.options)
        #print(ds.bout.metadata)
        print(ds.isel(t=-1))

        #ds.bout.set_extra_data('stored')
        ds.bout.extra_data = 'stored'

        print(ds.bout.extra_data)
Exemplo n.º 20
0
    def test_save_dtype(self, tmpdir_factory, bout_xyt_example_files, save_dtype):

        # Create data
        path = bout_xyt_example_files(tmpdir_factory, nxpe=1, nype=1, nt=1)

        # Load it as a boutdataset
        original = open_boutdataset(datapath=path, inputfilepath=None)

        # Save it to a netCDF file
        savepath = str(Path(path).parent) + 'temp_boutdata.nc'
        original.bout.save(savepath=savepath, save_dtype=np.dtype(save_dtype))

        # Load it again using bare xarray
        recovered = open_dataset(savepath)

        assert recovered['n'].values.dtype == np.dtype(save_dtype)
Exemplo n.º 21
0
    def test_save_all(self, tmpdir_factory, bout_xyt_example_files):
        # Create data
        path = bout_xyt_example_files(tmpdir_factory, nxpe=4, nype=5, nt=1)

        # Load it as a boutdataset
        original = open_boutdataset(datapath=path, inputfilepath=None)

        # Save it to a netCDF file
        savepath = str(Path(path).parent) + 'temp_boutdata.nc'
        original.bout.save(savepath=savepath)

        # Load it again using bare xarray
        recovered = open_dataset(savepath)

        # Compare equal (not identical because attributes are changed when saving)
        xrt.assert_equal(original, recovered)
Exemplo n.º 22
0
 def collectData(self, quant, simIndex=0, simType=''):
     os.chdir('{}/{}/{}'.format(self.outDir, simIndex, simType))
     if os.path.isfile('BOUT.dmp.nc') is False:
         print('{}-{} not squashed. squashing now'.format(simIndex, simType))
         squashoutput(quiet=True)
     gridFile = fnmatch.filter(next(os.walk('./'))[2], '*profile*')[0]
     print(gridFile)
     ds = open_boutdataset(
         'BOUT.dmp.nc',
         gridfilepath=gridFile,
         coordinates={'x': 'psi_pol', 'y': 'theta', 'z': 'zeta'},
         geometry='toroidal')
     try:
         quant2 = ds[quant]
     except(KeyError):
         quant2 = ds['t_array'].metadata[quant]
     return np.squeeze(quant2)
Exemplo n.º 23
0
    def test_save_separate_variables(self, tmpdir_factory, bout_xyt_example_files):
        path = bout_xyt_example_files(tmpdir_factory, nxpe=4, nype=1, nt=1)

        # Load it as a boutdataset
        original = open_boutdataset(datapath=path, inputfilepath=None)

        # Save it to a netCDF file
        savepath = str(Path(path).parent) + '/temp_boutdata.nc'
        original.bout.save(savepath=savepath, separate_vars=True)

        for var in ['n', 'T']:
            # Load it again using bare xarray
            savepath = str(Path(path).parent) + '/temp_boutdata_' + var + '.nc'
            recovered = open_dataset(savepath)

            # Compare equal (not identical because attributes are changed when saving)
            xrt.assert_equal(recovered[var], original[var])
Exemplo n.º 24
0
    def test_region_limiter(
        self,
        bout_xyt_example_files,
        guards,
        keep_xboundaries,
        keep_yboundaries,
        with_guards,
    ):
        # Note using more than MXG x-direction points and MYG y-direction points per
        # output file ensures tests for whether boundary cells are present do not fail
        # when using minimal numbers of processors
        dataset_list, grid_ds = bout_xyt_example_files(
            None,
            lengths=(2, 5, 4, 3),
            nxpe=1,
            nype=1,
            nt=1,
            guards=guards,
            grid="grid",
            topology="limiter",
        )

        ds = open_boutdataset(
            datapath=dataset_list,
            gridfilepath=grid_ds,
            geometry="toroidal",
            keep_xboundaries=keep_xboundaries,
            keep_yboundaries=keep_yboundaries,
        )

        ds["R"] = ds["R"].copy(deep=True)
        ds["R"].data[:, :] = np.linspace(0.0, 1.0, ds.sizes["x"])[:, np.newaxis]
        ds["Z"] = ds["Z"].copy(deep=True)
        ds["Z"].data[:, :] = np.linspace(0.0, 1.0, ds.sizes["theta"])[np.newaxis, :]

        n = ds["n"].isel(t=-1, zeta=0)

        n.bout.contour()
        plt.close()

        n.bout.contourf()
        plt.close()

        n.bout.pcolormesh()
        plt.close()
Exemplo n.º 25
0
    def test_save_all(self, tmpdir_factory, bout_xyt_example_files, options):
        # Create data
        path = bout_xyt_example_files(tmpdir_factory, nxpe=4, nype=5, nt=1)

        # Load it as a boutdataset
        original = open_boutdataset(datapath=path, inputfilepath=None)
        if not options:
            original.attrs['options'] = {}

        # Save it to a netCDF file
        savepath = str(Path(path).parent) + 'temp_boutdata.nc'
        original.bout.save(savepath=savepath)

        # Load it again using bare xarray
        recovered = open_dataset(savepath)

        # Compare
        xrt.assert_equal(original, recovered)
Exemplo n.º 26
0
    def test_metadata(self, tmpdir_factory):
        # Create temp directory for files
        test_dir = tmpdir_factory.mktemp("test_data")

        # Generate some test data
        generated_ds = create_bout_ds(syn_data_type="linear")
        generated_ds.to_netcdf(str(test_dir.join("BOUT.dmp.0.nc")))

        ds = open_boutdataset(test_dir.join('BOUT.dmp.*.nc'))

        for v in METADATA_VARS:
            expected = old_collect(v, path=test_dir)
            # Check metadata against new standard - open_boutdataset
            actual = ds.bout.metadata[v]
            npt.assert_equal(actual, expected)

            # Check against backwards compatible collect function
            actual = new_collect(v, path=test_dir)
            npt.assert_equal(actual, expected)
Exemplo n.º 27
0
    def test_reload_separate_variables(
        self, tmpdir_factory, bout_xyt_example_files, geometry
    ):
        if geometry is not None:
            grid = "grid"
        else:
            grid = None

        path = bout_xyt_example_files(tmpdir_factory, nxpe=4, nype=1, nt=1, grid=grid)

        if grid is not None:
            gridpath = str(Path(path).parent) + "/grid.nc"
        else:
            gridpath = None

        # Load it as a boutdataset
        original = open_boutdataset(
                       datapath=path,
                       inputfilepath=None,
                       geometry=geometry,
                       gridfilepath=gridpath,
                   )

        # Save it to a netCDF file
        savepath = str(Path(path).parent) + '/temp_boutdata.nc'
        original.bout.save(savepath=savepath, separate_vars=True)

        # Load it again
        savepath = str(Path(path).parent) + '/temp_boutdata_*.nc'
        recovered = reload_boutdataset(savepath, pre_squashed=True)

        # Compare
        for coord in original.coords.values():
            # Get rid of the options if they exist, because options are not dealt with
            # totally consistently: they exist if a coord was created from a variable
            # loaded from the BOUT++ output, but not if the coord was calculated from
            # some parameters or loaded from a grid file
            try:
                del coord.attrs["options"]
            except KeyError:
                pass
        xrt.assert_identical(recovered, original)
Exemplo n.º 28
0
    def test_derivatives_doublenull(self, bout_xyt_example_files):
        # Check function does not error on double-null topology
        dataset_list, grid_ds = bout_xyt_example_files(
            None,
            lengths=(2, 3, 4, 3),
            nxpe=1,
            nype=6,
            nt=1,
            grid="grid",
            guards={"x": 2, "y": 2},
            topology="connected-double-null",
        )

        ds = open_boutdataset(
            datapath=dataset_list,
            gridfilepath=grid_ds,
            geometry="toroidal",
            keep_yboundaries=True,
        )

        test_ddx = ds["n"].bout.ddx()
        test_ddy = ds["n"].bout.ddy()
        test_ddz = ds["n"].bout.ddz()
Exemplo n.º 29
0
from matplotlib import pyplot as plt

from xbout import open_boutdataset

# We do not distribute binary files with xBOUT, so you need to provide your own gridfile,
# for example one created using Hypnotoad.
gridfilepath = "grid.nc"
grid = open_boutdataset(gridfilepath, geometry="toroidal")

grid["psi_poloidal"].bout.contourf()
grid["psi_poloidal"].bout.contour()
grid["psi_poloidal"].bout.pcolormesh()
grid["psi_poloidal"].bout.pcolormesh(shading="gouraud")

grid["psi_poloidal"].bout.regions()

plt.show()
Exemplo n.º 30
0
    def test_dataset_duck_typing(self, tmpdir_factory, bout_xyt_example_files):
        path = bout_xyt_example_files(tmpdir_factory, nxpe=1, nype=1, nt=1)
        ds = open_boutdataset(datapath=path, inputfilepath=None)

        result = concat([ds.bout, ds.bout], dim='run')
        print(result)