Exemplo n.º 1
0
def grid_calculations(grid: xgcm.Grid, ds_full: xr.core.dataset.Dataset):

    # Compute difference (in degrees) along longitude and latitude for
    # both cell center and left
    dlong = grid.diff(ds_full.xt_ocean, 'X', boundary_discontinuity=360)
    dlonc = grid.diff(ds_full.xt_ocean_left, 'X', boundary_discontinuity=360)

    dlatg = grid.diff(ds_full.yt_ocean,
                      'Y',
                      boundary='fill',
                      fill_value=np.nan)
    dlatc = grid.diff(ds_full.yt_ocean_left,
                      'Y',
                      boundary='fill',
                      fill_value=np.nan)

    # Convert degrees to actual Cartesian distances on the Earth
    # add distances to coordinates in data
    ds_full.coords['dxg'], ds_full.coords['dyg'] = dll_dist(
        dlong, dlatg, ds_full.xt_ocean, ds_full.yt_ocean)
    ds_full.coords['dxc'], ds_full.coords['dyc'] = dll_dist(
        dlonc, dlatc, ds_full.xt_ocean, ds_full.yt_ocean)

    # Calculate area of each gridcell
    ds_full.coords['area_c'] = ds_full.dxc * ds_full.dyc

    # Fill nan values
    dyg = ds_full.dyg.fillna(111000)
    dyc = ds_full.dyc.fillna(111000)
    ds_full.coords['dyg'] = dyg
    ds_full.coords['dyc'] = dyc
Exemplo n.º 2
0
def split_adv_budget(ds):
    print('I think this is outdated....')
    ds = ds.copy()
    if 'o2_xflux_adv' in list(ds.data_vars):
        grid = Grid(ds)
        area = ds.area_t
        div_x = -grid.diff(ds.o2_xflux_adv, 'X', boundary='fill') / area
        div_y = -grid.diff(ds.o2_yflux_adv, 'Y', boundary='fill') / area
        div_z = grid.diff(ds.o2_zflux_adv, 'Z', boundary='fill') / area

        for data, name in zip([div_x, div_y, div_z],
                              ['o2_advection_%s' % a
                               for a in ['x', 'y', 'z']]):
            ds[name] = data
    return ds
Exemplo n.º 3
0
def test_calculate_rel_vorticity():
    datadict = datasets()
    coords = datadict["coords"]
    ds_b = datadict["B"]
    grid_b = Grid(ds_b, coords=coords)

    ds_c = datadict["C"]
    grid_c = Grid(ds_c, coords=coords)

    test_b = (grid_b.diff(grid_b.interp(ds_b.v * ds_b.dy_ne, "Y"), "X") -
              grid_b.diff(grid_b.interp(ds_b.u * ds_b.dx_ne, "X"),
                          "Y")) / ds_b.area_t

    zeta_b = calculate_rel_vorticity(
        grid_b,
        ds_b.u,
        ds_b.v,
        ds_b.dx_ne,
        ds_b.dy_ne,
        ds_b.area_t,
        gridtype=None,
    )

    test_c = (grid_c.diff(ds_c.v * ds_c.dy_n, "X") -
              grid_c.diff(ds_c.u * ds_c.dx_e, "Y")) / ds_c.area_ne

    zeta_c = calculate_rel_vorticity(
        grid_c,
        ds_c.u,
        ds_c.v,
        ds_c.dx_e,
        ds_c.dy_n,
        ds_c.area_ne,
        gridtype=None,
    )

    assert_allclose(test_b, zeta_b)
    assert_allclose(test_c, zeta_c)
    with pytest.raises(RuntimeError):
        zeta_c = calculate_rel_vorticity(
            grid_b,
            ds_c.u,
            ds_c.v,
            ds_c.dx_n,  # wrong coordinate
            ds_c.dy_n,
            ds_c.area_ne,
            gridtype=None,
        )
def calculate_momentum_budget(ds):
    grid = Grid(ds)

    combo = xr.Dataset()

    combo["u"] = ds.u
    combo["v"] = ds.v

    combo["du_dx"] = grid.diff(ds.u, "X") / ds.dxtn
    combo["du_dy"] = grid.diff(ds.u, "Y") / ds.dyte

    combo["u_du_dx"] = grid.interp(-combo["du_dx"] * grid.interp(ds.u, "X"),
                                   "Y")
    combo["v_du_dy"] = grid.interp(-combo["du_dy"] * grid.interp(ds.v, "Y"),
                                   "X")

    combo["hor"] = combo["u_du_dx"] + combo["v_du_dy"]
    combo["hor"].attrs[
        "long_name"] = "Zonal Velocity tendency due to hor divergence of momentum"
    combo["hor"].attrs["units"] = "m/s^(-2)"

    # Add tracer and vertical vel in there to get all relavant. Then drop again
    combo["wt"] = ds.wt  # for now just to include 'sw_ocean'
    combo["temp"] = ds.temp
    combo = combo.drop(["wt", "temp"])
    return combo
Exemplo n.º 5
0
def test_diff_c_to_g_periodic(periodic_1d):
    ds = periodic_1d

    # a linear gradient in the ni direction
    data_c = np.sin(ds['XC'])
    data_expected = data_c.values - np.roll(data_c.values, 1)

    grid = Grid(ds)
    data_g = grid.diff(data_c, 'X')

    # check that the dimensions are right
    assert data_g.dims == ('XG', )
    xr.testing.assert_equal(data_g.XG, ds.XG)
    assert len(data_g.XG) == len(data_g)

    # check that the values are right
    np.testing.assert_allclose(data_g.values, data_expected)

    # try the same with chunks
    data_c = np.sin(ds['XC'])
    data_c = data_c.chunk(10)
    data_g = grid.diff(data_c, 'X')
    np.testing.assert_allclose(data_g.values, data_expected)
def load_gos_data(gos_filenames):
    #import xgcm
    from xgcm import Grid
    from xgcm.autogenerate import generate_grid_ds
    # ====== load in all .nc files and combine into one xarray dataset
    gos_map = xr.open_mfdataset(gos_filenames)
    gos_map = gos_map.rename({'latitude': 'lat'}).rename({'longitude': 'lon'})
    gos_select = gos_map  #.sel(time='2016-11-19',lon=slice(10,16),lat=slice(-28,-24))
    #gos_map.ugos
    #dx = gos_map.lon.diff('lon')
    #gos_map['rel_vort'] = gos_map.vgos.diff('lon')/gos_map.lon.diff('lon')

    #gos_select = gos_map #gos_map.sel(time='2016-11-19',lon=slice(10,16),lat=slice(-28,-24))
    # create grid for interpolation, differencing
    #grid = xgcm.Grid(gos_select)
    # for Satellite data:
    # https://xgcm.readthedocs.io/en/latest/autogenerate_examples.html
    ds_full = generate_grid_ds(gos_select, {'X': 'lon', 'Y': 'lat'})
    ds_full.vgos

    grid = Grid(ds_full, periodic=['X'])

    # compute the difference (in degrees) along the longitude and latitude for both the cell center and the cell face
    # need to specify the boundary_discontinutity in order to avoid the introduction of artefacts at the boundary
    dlong = grid.diff(ds_full.lon, 'X', boundary_discontinuity=360)
    dlonc = grid.diff(ds_full.lon_left, 'X', boundary_discontinuity=360)
    #dlonc_wo_discontinuity = grid.diff(ds_full.lon_left, 'X')
    dlatg = grid.diff(ds_full.lat, 'Y', boundary='fill', fill_value=np.nan)
    dlatc = grid.diff(ds_full.lat_left,
                      'Y',
                      boundary='fill',
                      fill_value=np.nan)

    # converted into approximate cartesian distances on a globe.
    ds_full.coords['dxg'], ds_full.coords['dyg'] = dll_dist(
        dlong, dlatg, ds_full.lon, ds_full.lat)
    ds_full.coords['dxc'], ds_full.coords['dyc'] = dll_dist(
        dlonc, dlatc, ds_full.lon, ds_full.lat)

    # Relative vorticity: ζ = ∂ v/∂ x – ∂ u/∂ y
    ds_full['dv_dx'] = grid.diff(ds_full.vgos, 'X') / ds_full.dxg
    ds_full['du_dy'] = grid.diff(
        ds_full.ugos, 'Y', boundary='fill', fill_value=np.nan) / ds_full.dyg
    dv_dx = grid.interp(ds_full['dv_dx'],
                        'Y',
                        boundary='fill',
                        fill_value=np.nan)  # get dv_dx and du_dy on same grid
    du_dy = grid.interp(ds_full['du_dy'],
                        'X',
                        boundary='fill',
                        fill_value=np.nan)
    ds_full['Rel_Vort'] = dv_dx - du_dy

    # Vorticity Rossby Number = ζ / f
    ds_full['Ro'] = ds_full.Rel_Vort / coriolis(ds_full.Rel_Vort.lat_left)

    return ds_full
Exemplo n.º 7
0
def test_diff_c_to_g_nonperiodic(nonperiodic_1d):
    ds = nonperiodic_1d

    # a linear gradient in the ni direction
    grad = 0.24
    data_c = grad * ds['ni']
    data_expected = data_c.values[1:] - data_c.values[:-1]

    grid = Grid(ds, x_periodic=False)
    data_u = grid.diff(data_c, 'X')

    # check that the dimensions are right
    assert data_u.dims == ('ni_u', )
    xr.testing.assert_equal(data_u.ni_u, ds.ni_u[1:-1])
    assert len(data_u.ni_u) == len(data_u)

    # check that the values are right
    np.testing.assert_allclose(data_u.values, data_expected)
    np.testing.assert_allclose(data_u.values, grad)
Exemplo n.º 8
0
def test_diff_g_to_c_periodic(periodic_1d):
    ds = periodic_1d

    # a linear gradient in the ni direction
    data_g = np.sin(ds['XG'])
    # np.roll(np.arange(5), -1) --> [1, 2, 3, 4, 0]
    # negative roll shifts right
    data_expected = np.roll(data_g.values, -1) - data_g.values
    #data_expected = np.cos(ds['XC']).values * (2*np.pi) / 100.

    grid = Grid(ds)
    data_c = grid.diff(data_g, 'X')

    # check that the dimensions are right
    assert data_c.dims == ('XC', )
    xr.testing.assert_equal(data_c.XC, ds.XC)
    assert len(data_c.XC) == len(data_c)

    # check that the values are right
    np.testing.assert_allclose(data_c.values, data_expected)
Exemplo n.º 9
0
def test_diff_g_to_c_nonperiodic(nonperiodic_1d):
    """Interpolate from g grid to c grid."""

    ds = nonperiodic_1d

    # a linear gradient in the ni direction
    grad = 0.43
    data_u = grad * ds['ni_u']
    data_expected = data_u.values[1:] - data_u.values[:-1]

    grid = Grid(ds, x_periodic=False)
    data_c = grid.diff(data_u, 'X')

    # check that the dimensions are right
    assert data_c.dims == ('ni', )
    xr.testing.assert_equal(data_c.ni, ds.ni)
    assert len(data_c.ni) == len(data_c)

    # check that the values are right
    np.testing.assert_allclose(data_c.values, data_expected)
    np.testing.assert_allclose(data_c.values, grad)
Exemplo n.º 10
0
def calc_curl_stress(
    ds,
    ds_static,
    varx="tauuo",
    vary="tauvo",
    areacello_bu="areacello_bu",
    xdim="lon",
    ydim="lat",
    rho0=1035.0,
    maskname="wet_c",
    lonname="geolon_c",
    latname="geolat_c",
):
    """Calculate curl of stress acting on surface of the ocean.

    Parameters
        ----------
    ds        : xarray.Dataset dataset with tauuo and tauvo
    ds_static : xarray.Dataset with grid values
    varname   : str, optional
        Name of the tauuo and tauvo variables, by default "tauuo" and "tauvo"
    area : str, optional
        Name of the area variable, by default "areacello_bu"
    xdim : str, optional
        Name of the longitude coordinate, by default "lon"
    ydim : str, optional
        Name of the latitude coordinate, by default "lat"
    rho0: float, optional
        Reference density of seawater, by default 1035.0 kg/m3
    maskname: str, optional
        Name of land/sea mask, by default wet_c
    lonname: str, optional
        Name of longitude variable, by default geolon_c
    latname: str, optional
        Name of latitude variable, by default geolat_c
    Returns
    -------
        xarray.DataArray stress_curl
        curl of surface ocean stress
    """

    area = ds_static[areacello_bu]
    taux = ds[varx].mean(dim="time")
    tauy = ds[vary].mean(dim="time")

    # fill nan with 0.0 since want 0.0 values over land for the curl operation
    taux = taux.fillna(0.0)
    tauy = tauy.fillna(0.0)

    grid = Grid(
        ds_static,
        coords={
            "X": {
                "center": "xh",
                "outer": "xq"
            },
            "Y": {
                "center": "yh",
                "outer": "yq"
            },
        },
        periodic=["X"],
    )

    stress_curl = -grid.diff(taux * ds_static.dxCu, "Y",
                             boundary="fill") + grid.diff(
                                 tauy * ds_static.dyCv, "X", boundary="fill")

    stress_curl = stress_curl / (area * rho0)
    stress_curl = stress_curl.where(ds_static[maskname] == 1)
    stress_curl = stress_curl.assign_coords({
        lonname: ds_static[lonname],
        latname: ds_static[latname]
    })

    return stress_curl
Exemplo n.º 11
0
def add_split_tendencies(ds):
    """Reconstructs various fluxes and tendencies (x-y_x) from the monthly averaged output. Hardcoded to o2 atm."""
    ds = ds.copy()
    rho = 1035  #reference density
    grid = Grid(ds)

    # This should be calculated upstream (see: add_vertical_spacing), it is possibly totally wrong
    if 'dzwt' not in ds.coords:
        print(
            'Vertical spacing for vertical vel cell is approximated!!! Use with caution'
        )
        #         ds.coords['dzwt'] = grid.interp(ds['dzt'], 'Z')
        # This avoids computation. Somehow things are triggered when these fields are coordinates.
        ds['dzwt'] = grid.interp(ds['dzt'], 'Z')
    # These should be less critical, but should be given nontheless
    if 'dxte' not in ds.coords:
        print('Spacing for `dxte` is approximated!!! Use with caution')
        ds.coords['dxte'] = grid.interp(ds['dxt'], 'X')
    if 'dytn' not in ds.coords:
        print('Spacing for `dytn` is approximated!!! Use with caution')
        ds.coords['dytn'] = grid.interp(ds['dyt'], 'Y')

    # Calculate thickness weighted mass transports from velocities according to MOM5 formulation
    uhrho_et, vhrho_nt, wrhot = reconstruct_hrho_trans(ds.u, ds.v, ds.wt,
                                                       ds.dzt * rho,
                                                       ds.dzu * rho, grid, rho)

    # Reconstruct the flux terms
    ds['o2_xflux_adv_recon'], ds['o2_yflux_adv_recon'], ds['o2_zflux_adv_recon'] = \
        approximate_transport_op(uhrho_et, vhrho_nt, wrhot, ds['o2'], grid, boundary='extend')

    # Calculate tendencies from all advective fluxes
    for suffix in ['', '_recon']:
        ds['o2_advection_x'+suffix], \
        ds['o2_advection_y'+suffix], \
        ds['o2_advection_z'+suffix] = tend_from_fluxes(ds['o2_xflux_adv'+suffix],
                                                       ds['o2_yflux_adv'+suffix],
                                                       ds['o2_zflux_adv'+suffix], grid)

    # Reconstruct tendency terms seperately for changes in tracer and changes in transport
    udiv, vdiv, wdiv = tend_from_fluxes(uhrho_et * grid._ds.dyte,
                                        vhrho_nt * grid._ds.dxtn,
                                        wrhot * grid._ds.area_t, grid)
    ds['o2_advection_x_recon_vel'] = ds['o2'] * udiv
    ds['o2_advection_y_recon_vel'] = ds['o2'] * vdiv
    ds['o2_advection_z_recon_vel'] = ds['o2'] * wdiv

    ds['o2_advection_x_recon_tracer'] = -grid.interp(
        grid.diff(ds['o2'], 'X') / grid._ds.dxte * uhrho_et, 'X')
    ds['o2_advection_y_recon_tracer'] = -grid.interp(
        grid.diff(ds['o2'], 'Y') / grid._ds.dytn * vhrho_nt, 'Y')
    ds['o2_advection_z_recon_tracer'] = -grid.interp(
        grid.diff(ds['o2'], 'Z') / grid._ds.dzwt * wrhot, 'Z')

    #     # some interpolations... might want to remap these in the future, to get more accurate estimates
    #     u = grid.interp(ds['u'], 'Y')
    #     v = grid.interp(ds['v'], 'X')
    #     wt = ds['wt']
    # #     dxte = grid.interp(ds.dxu, 'Y')
    # #     dytn = grid.interp(ds.dyu, 'X')

    #     # o2_flux reconstructed from tracer and velocity field (vel*tracer*dyt*dzt*rho)
    #     # Are the values actually interpolated or do they take the center tracer value? Read up in MOM5 manual and correct if needed.
    #     # This will need some more advanced testing...in the end we cannot really reproduce the complex advection scheme, but it is worth trying
    # #     # to get as close as possible.
    # #     ds['o2_xflux_adv_recon'] = grid.interp(ds['o2'], 'X') * u * ds.dzt * ds.dyte * rho
    # #     ds['o2_yflux_adv_recon'] = grid.interp(ds['o2'], 'Y') * v * ds.dzt * ds.dxtn * rho
    # #     ds['o2_zflux_adv_recon'] = grid.interp(ds['o2'], 'Z') * wt * ds.dxt * ds.dyt * rho

    #     # Reconstruct the advective tendencies (as (tracer* s^-1) * dzt * rho)
    #     # also not sure about the numerics here...this implements finite difference approach...which mom used for some variables but not all...

    #     ds['o2_advection_x_recon_full'] = - (grid.diff(ds['o2_xflux_adv_recon'], 'X') / ds.area_t)
    #     ds['o2_advection_x_recon_du'] = - (ds['o2'] * grid.diff(u, 'X') / ds.dxt * ds.dzt * rho)
    #     ds['o2_advection_x_recon_do2'] = - (u * grid.diff(ds['o2'], 'X') / dxte * ds.dzt * rho)

    #     ds['o2_advection_y_recon_full'] = - (grid.diff(ds['o2_yflux_adv_recon'], 'Y') / ds.area_t)
    #     ds['o2_advection_y_recon_dv'] = - (ds['o2'] * grid.diff(v, 'Y') / ds.dyt * ds.dzt * rho)
    #     ds['o2_advection_y_recon_do2'] = - (v * grid.diff(ds['o2'], 'Y') / dytn * ds.dzt * rho)

    #     ds['o2_advection_z_recon_full'] =  (grid.diff(ds['o2_zflux_adv_recon'], 'Z') / ds.area_t)
    #     ds['o2_advection_z_recon_dwt'] =  (ds['o2'] * grid.diff(wt, 'Z') * rho)
    #     ds['o2_advection_z_recon_do2'] =  (wt * grid.diff(ds['o2'], 'Z') * rho)
    return ds
Exemplo n.º 12
0
def add_latlon_metrics(dset, dims=None):
    """
    Infer 2D metrics (latitude/longitude) from gridded data file.

    Parameters
    ----------
    dset : xarray.Dataset
        A dataset open from a file
    dims : dict
        Dimension pair in a dict, e.g., {'lat':'latitude', 'lon':'longitude'}

    Return
    -------
    dset : xarray.Dataset
        Input dataset with appropriated metrics added
    grid : xgcm.Grid
        The grid with appropriated metrics
    """
    lon, lat = None, None

    if dims is None:
        for dim in dimXList:
            if dim in dset or dim in dset.coords:
                lon = dim
                break

        for dim in dimYList:
            if dim in dset or dim in dset.coords:
                lat = dim
                break

        if lon is None or lat is None:
            raise Exception('unknown dimension names in dset, should be in ' +
                            str(dimXList + dimYList))
    else:
        lon, lat = dims['lon'], dims['lat']

    ds = generate_grid_ds(dset, {'X': lon, 'Y': lat})

    coords = ds.coords

    if __is_periodic(coords[lon], 360.0):
        periodic = 'X'
    else:
        periodic = []

    grid = Grid(ds, periodic=periodic)

    na = np.nan

    if 'X' in periodic:
        dlonG = grid.diff(ds[lon], 'X', boundary_discontinuity=360)
        dlonC = grid.diff(ds[lon + '_left'], 'X', boundary_discontinuity=360)
    else:
        dlonG = grid.diff(ds[lon], 'X', boundary='fill', fill_value=na)
        dlonC = grid.diff(ds[lon + '_left'],
                          'X',
                          boundary='fill',
                          fill_value=na)

    dlatG = grid.diff(ds[lat], 'Y', boundary='fill', fill_value=na)
    dlatC = grid.diff(ds[lat + '_left'], 'Y', boundary='fill', fill_value=na)

    coords['dxG'], coords['dyG'] = __dll_dist(dlonG, dlatG, ds[lon], ds[lat])
    coords['dxC'], coords['dyC'] = __dll_dist(dlonC, dlatC, ds[lon], ds[lat])
    coords['rAc'] = ds['dyC'] * ds['dxC']

    metrics = {
        ('X', ): ['dxG', 'dxC'],  # X distances
        ('Y', ): ['dyG', 'dyC'],  # Y distances
        ('X', 'Y'): ['rAc']
    }

    grid._assign_metrics(metrics)

    return ds, grid
Exemplo n.º 13
0
def get_roms(path):
    ds = xr.open_mfdataset(path,
                           concat_dim='ocean_time',
                           combine='nested',
                           data_vars='minimal',
                           coords='minimal',
                           parallel=True,
                           chunks={
                               'ocean_time': 1,
                           })
    ds = ds.rename({
        'eta_u': 'eta_rho',
        'xi_v': 'xi_rho',
        'xi_psi': 'xi_u',
        'eta_psi': 'eta_v'
    })

    coords = {
        'X': {
            'center': 'xi_rho',
            'inner': 'xi_u'
        },
        'Y': {
            'center': 'eta_rho',
            'inner': 'eta_v'
        },
        'Z': {
            'center': 's_rho',
            'outer': 's_w'
        }
    }

    grid = Grid(ds, coords=coords, periodic=[])

    Zo_rho = (ds.hc * ds.s_rho + ds.Cs_r * ds.h) / (ds.hc + ds.h)
    z_rho = Zo_rho * (ds.zeta + ds.h) + ds.zeta
    Zo_w = (ds.hc * ds.s_w + ds.Cs_w * ds.h) / (ds.hc + ds.h)
    z_w = Zo_w * (ds.zeta + ds.h) + ds.zeta

    ds.coords['z_w'] = z_w.where(ds.mask_rho,
                                 0).transpose('ocean_time', 's_w', 'eta_rho',
                                              'xi_rho')
    ds.coords['z_rho'] = z_rho.where(ds.mask_rho,
                                     0).transpose('ocean_time', 's_rho',
                                                  'eta_rho', 'xi_rho')

    ds['pm_v'] = grid.interp(ds.pm, 'Y')
    ds['pn_u'] = grid.interp(ds.pn, 'X')
    ds['pm_u'] = grid.interp(ds.pm, 'X')
    ds['pn_v'] = grid.interp(ds.pn, 'Y')
    ds['pm_psi'] = grid.interp(grid.interp(ds.pm, 'Y'),
                               'X')  # at psi points (eta_v, xi_u)
    ds['pn_psi'] = grid.interp(grid.interp(ds.pn, 'X'),
                               'Y')  # at psi points (eta_v, xi_u)

    ds['dx'] = 1 / ds.pm
    ds['dx_u'] = 1 / ds.pm_u
    ds['dx_v'] = 1 / ds.pm_v
    ds['dx_psi'] = 1 / ds.pm_psi

    ds['dy'] = 1 / ds.pn
    ds['dy_u'] = 1 / ds.pn_u
    ds['dy_v'] = 1 / ds.pn_v
    ds['dy_psi'] = 1 / ds.pn_psi

    ds['dz'] = grid.diff(ds.z_w, 'Z', boundary='fill')
    ds['dz_w'] = grid.diff(ds.z_rho, 'Z', boundary='fill')
    ds['dz_u'] = grid.interp(ds.dz, 'X')
    ds['dz_w_u'] = grid.interp(ds.dz_w, 'X')
    ds['dz_v'] = grid.interp(ds.dz, 'Y')
    ds['dz_w_v'] = grid.interp(ds.dz_w, 'Y')

    ds['dA'] = ds.dx * ds.dy

    metrics = {
        ('X', ): ['dx', 'dx_u', 'dx_v', 'dx_psi'],  # X distances
        ('Y', ): ['dy', 'dy_u', 'dy_v', 'dy_psi'],  # Y distances
        ('Z', ): ['dz', 'dz_u', 'dz_v', 'dz_w', 'dz_w_u',
                  'dz_w_v'],  # Z distances
        ('X', 'Y'): ['dA']  # Areas
    }
    grid = Grid(ds, coords=coords, metrics=metrics, periodic=[])
    return ds, grid
Exemplo n.º 14
0
                'X': {
                    'center': 'i',
                    'right': 'i_g'
                },
                'Y': {
                    'center': 'j',
                    'right': 'j_g'
                }
            })

#ds1 = model.get_dataset(varnames=['W'], type='latlon')
#grid1 = Grid(ds1, coords={'X': {'center': 'i', 'right': 'i_g'}, 'Y': {'center': 'j', 'right': 'j_g'}, 'Z': {'center': 'k', 'outer': 'k_l'}})
#ds1 = xr.merge([ds1, dsgrid])

# Compute vorticity and divergence
vorticity = (-grid.diff(ds.U * ds.dxC, 'Y', boundary='fill') +
             grid.diff(ds.V * ds.dyC, 'X', boundary='fill')) / ds.rAz

divergence = (grid.diff(ds.U * ds.dxC, 'X', boundary='fill') +
              grid.diff(ds.V * ds.dyC, 'Y', boundary='fill')) / ds.rA

# Select data for a small region
lat1, lat2 = (29., 41.)
# 10x10 deg box near gulf stream
lon1, lon2 = (-121., -109.)
# 1 deg should be avoided on each side for the final data

u1 = grid.interp(ds.U, 'X', boundary='fill')
v1 = grid.interp(ds.V, 'Y', boundary='fill')
vort = grid.interp(grid.interp(vorticity, 'X', boundary='fill'),
                   'Y',