Exemplo n.º 1
0
 def __init__(self, args):
     augment = False
     shuffle = False
     self.channel = args.channel
     self.batchsize = args.batch_size
     self.validationdataset = LipreadingDataset(args.dataset,
                                                "val",
                                                augment=augment,
                                                channel=self.channel)
     self.validationdataloader = DataLoader(self.validationdataset,
                                            batch_size=self.batchsize,
                                            shuffle=shuffle,
                                            num_workers=args.workers,
                                            drop_last=True)
     # self.usecudnn = options["general"]["usecudnn"]
     self.statsfrequency = args.statsfrequency
     # self.gpuid = options["general"]["gpuid"]
     self.log_file = args.logfile
     self.savedir = args.save_dir
     self.num_batches = int(len(self.validationdataset) / self.batchsize)
     self.num_samples = int(len(self.validationdataset))
     self.num_frames = args.num_frames
     self.modelname = args.modelname
     print_log('loaded validation dataset with %d data' %
               len(self.validationdataset),
               log=self.log_file)
Exemplo n.º 2
0
    def __init__(self, args, input_dims=256):
        super(C3D_CONV_CONV, self).__init__()
        channel = args.channel
        print_log('channel is %d' % channel, log=args.logfile)

        self.frontend = ConvFrontend(channel)
        self.resnet = ResNetBBC(input_dims, args.batch_size)
        self.backend = ConvBackend(args.num_classes)


        # self.frontend.apply(freeze)
        # self.resnet.apply(freeze)

        #function to initialize the weights and biases of each module. Matches the
        #classname with a regular expression to determine the type of the module, then
        #initializes the weights for it.
        def weights_init(m):
            classname = m.__class__.__name__
            if re.search("Conv[123]d", classname):
                m.weight.data.normal_(0.0, 0.02)
            elif re.search("BatchNorm[123]d", classname):
                m.weight.data.fill_(1.0)
                m.bias.data.fill_(0)
            elif re.search("Linear", classname):
                m.bias.data.fill_(0)

        #Apply weight initialization to every module in the model.
        self.apply(weights_init)
Exemplo n.º 3
0
def test_print_log():
    str_to_print = '123'
    log_file = 'log.txt'
    log_file = open(log_file, 'w')
    print_log(str_to_print, log=log_file, same_line=True)
    print_log(str_to_print, log=log_file, same_line=True)
    print_log(str_to_print, log=log_file, same_line=True)
    print_log(str_to_print, log=log_file, same_line=True)
    log_file.close()
 def __init__(self, options):
     self.batchsize = options["input"]["batchsize"]
     self.validationdataset = LipreadingDataset(
         options["general"]["dataset"], "val", False)
     self.validationdataloader = DataLoader(
         self.validationdataset,
         batch_size=self.batchsize,
         shuffle=False,
         num_workers=options["input"]["numworkers"],
         drop_last=True)
     self.usecudnn = options["general"]["usecudnn"]
     self.statsfrequency = options["training"]["statsfrequency"]
     self.gpuid = options["general"]["gpuid"]
     self.log_file = options["general"]["logfile"]
     self.savedir = options["general"]["modelsavedir"]
     self.num_batches = int(len(self.validationdataset) / self.batchsize)
     print_log('loaded validation dataset with %d data' %
               len(self.validationdataset),
               log=self.log_file)
Exemplo n.º 5
0
 def display(self, log_file):
     """Display Configuration values."""
     print_log('\nConfigurations:', log=log_file)
     for a in dir(self):
         if not a.startswith("__") and not callable(getattr(self, a)):
             print_log('{:30} {}'.format(a, getattr(self, a)), log_file)
     print_log('\n', log=log_file)
Exemplo n.º 6
0
 def __init__(self, args):
     augment = True
     shuffle = True
     self.channel = args.channel
     self.batchsize = args.batch_size
     self.trainingdataset = LipreadingDataset(args.dataset,
                                              "train",
                                              augment=augment,
                                              channel=self.channel)
     self.trainingdataloader = DataLoader(self.trainingdataset,
                                          batch_size=self.batchsize,
                                          shuffle=shuffle,
                                          num_workers=args.workers,
                                          drop_last=True)
     # self.usecudnn = options["general"]["usecudnn"]
     self.statsfrequency = args.statsfrequency
     # self.gpuid = options["general"]["gpuid"]
     self.learningrate = args.lr
     self.weightdecay = args.weight_decay
     self.momentum = args.momentum
     self.log_file = args.logfile
     self.modelsavedir = args.save_dir
     # _, self.savename, _ = fileparts(self.modelsavedir)
     self.num_batches = int(len(self.trainingdataset) / self.batchsize)
     self.num_samples = int(len(self.trainingdataset))
     self.num_frames = args.num_frames
     self.modelname = args.modelname
     print_log('loaded training dataset with %d data' %
               len(self.trainingdataset),
               log=self.log_file)
     if augment: print_log('using augmentation', log=self.log_file)
     else: print_log('no data augmentation', log=self.log_file)
Exemplo n.º 7
0
 def __init__(self, options):
     self.batchsize = options["input"]["batchsize"]
     self.trainingdataset = LipreadingDataset(options["general"]["dataset"],
                                              "train")
     self.trainingdataloader = DataLoader(
         self.trainingdataset,
         batch_size=self.batchsize,
         shuffle=options["training"]["shuffle"],
         num_workers=options["input"]["numworkers"],
         drop_last=True)
     self.usecudnn = options["general"]["usecudnn"]
     self.statsfrequency = options["training"]["statsfrequency"]
     self.gpuid = options["general"]["gpuid"]
     self.learningrate = options["training"]["learningrate"]
     # self.modelType = options["training"]["learningrate"]
     self.weightdecay = options["training"]["weightdecay"]
     self.momentum = options["training"]["momentum"]
     self.log_file = options["general"]["logfile"]
     self.modelsavedir = options["general"]["modelsavedir"]
     _, self.time_str, _ = fileparts(self.modelsavedir)
     print_log('loaded training dataset with %d data' %
               len(self.trainingdataset),
               log=options["general"]["logfile"])
    def epoch(self, model, epoch):
        print_log("Starting validation...", log=self.log_file)
        count = 0
        validator_function = model.validator_function()
        for i_batch, (sample_batched,
                      filename_batch) in enumerate(self.validationdataloader):
            with torch.no_grad():
                input = Variable(sample_batched['temporalvolume'])
                labels = sample_batched['label']
                if (self.usecudnn):
                    input = input.cuda(self.gpuid)
                    labels = labels.cuda(self.gpuid)  # num_batch x 1

                outputs = model(
                    input
                )  # num_batch x 500 for temp-conv         num_batch x 29 x 500
                count_tmp, predict_index_list = validator_function(
                    outputs, labels)
                count += count_tmp

                for batch_index in range(self.batchsize):
                    filename_tmp = filename_batch[batch_index]
                    _, filename_tmp, _ = fileparts(filename_tmp)
                    filename_tmp = filename_tmp.split('_')[0]
                    prediction_tmp = self.validationdataset.label_list[
                        predict_index_list[batch_index]]
                    print_log(
                        'Evaluation: val set, batch index %d/%d, filename: %s, prediction: %s'
                        % (batch_index + 1, self.batchsize, filename_tmp,
                           prediction_tmp),
                        log=self.log_file)

                print_log(
                    'Evaluation: val set, batch %d/%d, correct so far %d/%d' %
                    (i_batch + 1, self.num_batches, count, self.batchsize *
                     (i_batch + 1)),
                    log=self.log_file)

        accuracy = count / len(self.validationdataset)
        accu_savepath = os.path.join(self.savedir,
                                     'accuracy_epoch%03d.txt' % epoch)
        print_log('saving the accuracy file to %s' % accu_savepath,
                  log=self.log_file)
        with open(accu_savepath, "a") as outputfile:
            outputfile.write(
                "\ncorrect count: {}, total count: {} accuracy: {}".format(
                    count, len(self.validationdataset), accuracy))
Exemplo n.º 9
0
    def epoch(self, model, epoch):
        print_log("Starting validation...", log=self.log_file)
        criterion = model.loss()
        validator_function = model.validator_function()
        sum_loss_so_far, corrects_so_far, sum_samples_so_far = 0., 0., 0.
        for i_batch, (sample_batched,
                      filename_batch) in enumerate(self.validationdataloader):
            with torch.no_grad():
                inputs = Variable(sample_batched['temporalvolume']).cuda()
                labels = sample_batched['label'].cuda()
                # if(self.usecudnn):
                # inputs = inputs.cuda(self.gpuid)
                # labels = labels.cuda(self.gpuid)        # num_batch x 1

                outputs = model(
                    inputs
                )  # num_batch x 500 for temp-conv         num_batch x 29 x 500

                loss = criterion(outputs, labels.squeeze(1))

                # ave_loss_per_batch = loss.item() / float(self.num_frames)
                # ave_loss_per_batch = loss.item() / 7.           # TODO only true for lstm model
                ave_loss_per_batch = loss.item()

                sum_loss_so_far += ave_loss_per_batch * inputs.size(0)
                corrects_per_batch, predict_index_list = validator_function(
                    outputs, labels)
                corrects_so_far += corrects_per_batch
                sum_samples_so_far += self.batchsize

                print_log(
                    '%s, val, Epoch: %d, %d/%d (%.f%%), Loss: %.4f, Accu: %.4f'
                    % (self.modelname, epoch, sum_samples_so_far,
                       self.num_samples, 100. * i_batch /
                       (self.num_batches - 1), ave_loss_per_batch,
                       corrects_per_batch / float(self.batchsize)),
                    log=self.log_file)

        ave_loss_per_epoch = sum_loss_so_far / sum_samples_so_far
        ave_accu_per_epoch = corrects_so_far / sum_samples_so_far  # debug: to test the number is the same
        print_log(
            'val, Epoch: {}, Average Loss: {:.4f}, Average Accuracy: {:.4f}'.
            format(epoch, ave_loss_per_epoch, ave_accu_per_epoch) + '\n',
            log=self.log_file)
        return ave_loss_per_epoch, ave_accu_per_epoch
Exemplo n.º 10
0
    def epoch(self, model, epoch):
        #set up the loss function.
        criterion = model.loss()
        optimizer = optim.SGD(model.parameters(),
                              lr=self.learningRate(epoch),
                              momentum=self.learningrate,
                              weight_decay=self.weightdecay)

        #transfer the model to the GPU.
        if self.usecudnn: criterion = criterion.cuda(self.gpuid)
        startTime = datetime.now()
        print_log("Starting training...", log=self.log_file)
        for i_batch, (sample_batched, _) in enumerate(self.trainingdataloader):
            optimizer.zero_grad()
            input = Variable(sample_batched['temporalvolume'])
            labels = Variable(sample_batched['label'])
            if (self.usecudnn):
                input = input.cuda(self.gpuid)
                labels = labels.cuda(self.gpuid)

            outputs = model(input)
            loss = criterion(outputs, labels.squeeze(1))
            print_log('Training: {}, Epoch: {}, loss is {}'.format(
                self.time_str, epoch, loss.item()),
                      log=self.log_file)
            loss.backward()
            optimizer.step()
            sampleNumber = i_batch * self.batchsize
            if sampleNumber % self.statsfrequency == 0:
                currentTime = datetime.now()
                output_iteration(sampleNumber, currentTime - startTime,
                                 len(self.trainingdataset), self.log_file)

        print_log("Epoch completed, saving state...", log=self.log_file)
        torch.save(
            model.state_dict(),
            os.path.join(self.modelsavedir,
                         'trained_model_epoch%03d.pt' % epoch))
Exemplo n.º 11
0
def output_iteration(i, time, totalitems, log_file):
    avgBatchTime = time / (i + 1)
    estTime = avgBatchTime * (totalitems - i)
    print_log("Iteration: {}\nElapsed Time: {} \nEstimated Time Remaining: {}".
              format(i, timedelta_string(time), timedelta_string(estTime)),
              log=log_file)
Exemplo n.º 12
0
def compute_metrics(gt_json, pred_json, split='test', total_sample=20):
    results_dir = fileparts(pred_json)[0]
    log_file = os.path.join(results_dir, 'eval_traj_log.txt')
    log_file = open(log_file, 'w')

    # data loading
    print_log('loading GT from %s' % gt_json, log_file)
    with open(gt_json, 'r') as file:
        gt_data = json.load(file)
    print_log('loading results from %s' % pred_json, log_file)
    with open(pred_json, 'r') as file:
        pred_data = json.load(file)

    # 4 metrics x 3 settings x 4 classes x N windows
    metrics = ['ADE', 'FDE', 'APD', 'FPD', 'MsR']  # set up metrics
    stats_meter = {}
    for pred_len in [10, 20, 50]:  # 1s, 2s, 5s prediction settings
        skip = len2skip[pred_len]

        for obj_class in ['Car', 'Ped', 'Cyc', 'Mot']:
            for metric_tmp in metrics:
                stats_meter['%s_%d_%s' % (metric_tmp, pred_len,
                                          obj_class)] = AverageMeter()
            gt_obj = gt_data[obj_class]
            if str(pred_len) not in pred_data.keys(): continue
            pred_data_len = pred_data[str(
                pred_len)]  # get prediction at a specific pred len
            if obj_class not in pred_data_len.keys(): continue
            pred_data_obj = pred_data_len[
                obj_class]  # get prediction for a specific class

            # loop through based on GT data so that missing prediction can be handled
            num_total_obj_valid, num_miss = 0, 0
            for seqname, gt_seq in gt_obj.items():
                gt_seq = np.array(gt_seq)  # N x 4

                # frame-centric evaluation, go through every possible window of frames, e.g., frame 1-20, 2-21 for 10->10
                frames = np.unique(gt_seq[:, 0]).tolist()
                min_frame, max_frame = frames[0], frames[-1]
                num_windows = int(max_frame - min_frame + 1 - pred_len * 2 +
                                  skip)  # this additional + 1 is correct
                for window_index in range(num_windows):
                    start_frame = int(window_index + min_frame + pred_len)
                    end_frame = int(start_frame + pred_len)

                    # check which window to be dropped
                    check_pass = check_eval_windows(start_frame, pred_len,
                                                    split)
                    if not check_pass: continue

                    ####### filter frame windows, reserver any window with past data >= 1 frame, future data >= 1 frame
                    # filter out frame window where there is no GT inside
                    gt_window = []
                    for frame in range(start_frame, end_frame, skip):
                        gt_window.append(gt_seq[frame == gt_seq[:, 0], :])
                    gt_window = np.concatenate(
                        gt_window,
                        axis=0)  # N x 4, within a particular time window
                    if gt_window.shape[0] == 0: continue
                    ID_list = np.unique(gt_window[:, 1]).tolist()  # get GT IDs

                    # filter out frame window where there is no past observations at all
                    past_start = start_frame - pred_len
                    gt_window_past = []
                    for frame in range(past_start, start_frame, skip):
                        gt_window_past.append(gt_seq[frame == gt_seq[:, 0], :])
                    gt_window_past = np.concatenate(
                        gt_window_past,
                        axis=0)  # N x 4, within a particular time window
                    if gt_window_past.shape[0] == 0: continue

                    # filter out ID in this frame window when this ID has no past observations
                    for ID_tmp in ID_list:
                        gt_past = copy.copy(
                            gt_window_past[gt_window_past[:, 1] ==
                                           float(ID_tmp), :]
                        )  # (<=pred_len/skip) x 2, might have missing data
                        num_past_frames = gt_past.shape[0]
                        if num_past_frames == 0:
                            ID_list, _ = remove_unique_item_from_list(
                                ID_list, ID_tmp)
                    if len(ID_list) == 0: continue
                    num_total_obj_valid += len(ID_list)

                    # check prediction if have data in this seq and frame, otherwise all objects are missed
                    try:
                        pred_window = pred_data_obj[seqname][str(
                            start_frame)]  # {sample: {ID: {state, prob}}}
                    except:
                        try:
                            pred_window = pred_data_obj[seqname][
                                start_frame]  # {sample: {ID: {state, prob}}}
                        except:
                            print('No prediction data found for len of %d, %s, seq %s, frame %s' % \
                                (pred_len, obj_class, seqname, start_frame))
                            num_miss += len(ID_list)
                            continue

                    ######## get predictions within this window
                    sample_count = 0
                    ade_list, fde_list = [], []
                    pred_all_sample, gt_all_sample = [], []

                    # sample must be in the outer loop to compute scene-specific min of ADE
                    for sample_index, pred_tmp in pred_window.items():
                        best_k_pred, best_k_gt = [], []
                        gt_mask = np.zeros(
                            (len(ID_list),
                             int(pred_len /
                                 skip)))  # initialize mask on missing frames
                        keep_ID_index = []
                        for ID_count in range(len(ID_list)):
                            ID_tmp = ID_list[ID_count]

                            # check if prediction has data for this ID, otherwise this object is missed
                            try:
                                pred_ID = pred_tmp[str(int(ID_tmp))]
                            except:
                                try:
                                    pred_ID = pred_tmp[int(ID_tmp)]
                                except:
                                    if int(sample_index) == 0:
                                        num_miss += 1
                                        print('\nID %d missied in prediction data for len of %d, %s, seq %s, frame %s\n' % \
                                            (ID_tmp, pred_len, obj_class, seqname, start_frame))
                                    continue

                            # get prediction states
                            state, prob = pred_ID['state'], pred_ID['prob']
                            state = np.array(state)  # pred_len/skip x 2
                            assert state.shape[0] == pred_len / skip, 'error'

                            # get GT states
                            gt_ID = copy.copy(
                                gt_window[gt_window[:, 1] == float(ID_tmp), :]
                            )  # (<=pred_len/skip) x 2, might have missing data
                            assert gt_ID.shape[
                                0] > 0, 'error'  # this is guaranteed, as this ID exists so there is at least one frame of data for this ID
                            frame_exist = gt_ID[:, 0].tolist(
                            )  # get existing frames before completion
                            if gt_ID.shape[0] < pred_len / skip:
                                gt_ID = complete_data_window(
                                    gt_ID, start_frame, end_frame,
                                    skip)  # pred_len/skip x 2

                            # get GT mask
                            frame_exist_index = np.array([
                                frame_tmp - start_frame
                                for frame_tmp in frame_exist
                            ])
                            frame_exist_index = (frame_exist_index /
                                                 skip).astype('uint8')
                            gt_mask[ID_count, frame_exist_index] = 1

                            # store both prediction and GT
                            keep_ID_index.append(ID_count)
                            best_k_pred.append(state)
                            best_k_gt.append(
                                gt_ID[:, 2:]
                            )  # take only the state (last two columns)

                        # compute ADE/FDE in this sample
                        gt_mask = gt_mask[keep_ID_index, :]
                        best_k_pred = np.stack(
                            best_k_pred, axis=0)  # obj x pred_len/skip x 2
                        best_k_gt = np.stack(best_k_gt,
                                             axis=0)  # obj x pred_len/skip x 2
                        ade_tmp = compute_ADE(best_k_pred,
                                              best_k_gt,
                                              mask=gt_mask)
                        fde_tmp = compute_FDE(best_k_pred,
                                              best_k_gt,
                                              mask=gt_mask)
                        ade_list.append(ade_tmp)
                        fde_list.append(fde_tmp)

                        # aggregate all samples
                        pred_all_sample.append(best_k_pred)
                        gt_all_sample.append(best_k_gt)

                        # evaluation allows up to the first 20 samples
                        sample_count += 1
                        if sample_count > total_sample: break

                    # check if every sample has the same shape, i.e., has the same number of predictions of IDs
                    try:
                        ade_array = np.stack(ade_list, axis=1)  # obj x samples
                        fde_array = np.stack(fde_list, axis=1)  # obj x samples
                        pred_all_sample = np.stack(
                            pred_all_sample,
                            axis=0)  # samples x obj x frames x 2
                        gt_all_sample = np.stack(gt_all_sample, axis=0)
                        assert pred_all_sample.shape == gt_all_sample.shape, 'error'
                    except ValueError:
                        assert False, 'each sample has predictions with different set of IDs, please make sure every sample has the same shape of prediction (same set of IDs)'

                    # compute best of K ADE/FDE
                    ade_best, fde_best = best_of_K(ade_array, fde_array)
                    num_obj = ade_array.shape[
                        0]  # might less than len(ID_list) as some IDs are not contained in predictions
                    stats_meter['ADE_%s_%s' % (pred_len, obj_class)].update(
                        ade_best, n=num_obj)
                    stats_meter['FDE_%s_%s' % (pred_len, obj_class)].update(
                        fde_best, n=num_obj)

                    # compute APD/FPD for diversity
                    apd = compute_APD(pred_all_sample)
                    fpd = compute_FPD(pred_all_sample)
                    stats_meter['APD_%s_%s' % (pred_len, obj_class)].update(
                        apd, n=num_obj)
                    stats_meter['FPD_%s_%s' % (pred_len, obj_class)].update(
                        fpd, n=num_obj)

                    # only copying the ones under the current class when logging
                    stats_meter_show = {}
                    for metric_tmp, values in stats_meter.items():
                        if (str(pred_len)
                                in metric_tmp) and obj_class in metric_tmp:
                            stats_meter_show[metric_tmp] = values

                    # logging
                    stats_str = ' '.join([
                        f'{x[:3]}: {y.val:6.3f} ({y.avg:6.3f})'
                        for x, y in stats_meter_show.items()
                    ])
                    print_str = 'Len: %d, %s, %s, %03d-%03d, %s\r' % \
                        (pred_len, obj_class, seqname, start_frame, end_frame-1, stats_str)
                    print_log(print_str, log_file, display=False)
                    sys.stdout.write(print_str)
                    sys.stdout.flush()

            # compute missing rate metric
            missrate = num_miss * 1.0 / num_total_obj_valid
            stats_meter['MsR_%s_%s' % (pred_len, obj_class)].update(
                missrate, n=num_total_obj_valid)
            assert missrate == stats_meter['MsR_%s_%s' %
                                           (pred_len, obj_class)].avg, 'error'
            if num_miss > 0:
                print('\n\nMissing IDs: %d, total IDs: %d, miss rate: %.3f for len of %d, %s\n' % \
                    (num_miss, num_total_obj_valid, missrate, pred_len, obj_class))

    ################ logging
    print_log('', log_file)
    metric_all = dict()
    for pred_len in [10, 20, 50]:
        # compute average ADE/FDE/APD/FPD/MsR
        for metric in ['ADE', 'FDE', 'APD', 'FPD', 'MsR']:
            metric_all['%s_%d' % (metric, pred_len)] = list()
            for obj_class in ['Car', 'Ped', 'Cyc', 'Mot']:
                key_tmp = '%s_%d_%s' % (metric, pred_len, obj_class)
                num_value = stats_meter[key_tmp].count
                if num_value == 0: tmp_value = np.nan
                else: tmp_value = stats_meter[key_tmp].avg
                metric_all['%s_%d' % (metric, pred_len)].append(tmp_value)
            metric_all['%s_%d' % (metric, pred_len)] = np.array(
                metric_all['%s_%d' % (metric, pred_len)]).mean()

        # logging header
        print_log('', log_file)
        print_log('-' * 30 + ' STATS for length of %d ' % pred_len + '-' * 30,
                  log_file)
        print_log(' ' * 5, log_file, same_line=True)
        print_log('ADE_%d'%pred_len+' '*2+'FDE_%d'%pred_len+' '*2+'APD_%d'%pred_len+' '*2+'FPD_%d'%pred_len+' '*2+'MsR_%d'%pred_len+' '*2, \
            log_file, same_line=True)
        print_log('', log_file)

        # logging table: row class, column metrics
        cur_class = 'Car'
        cur_index = 0
        for name, meter in stats_meter.items():
            num_value = meter.count
            if num_value == 0: final_value = np.nan
            else: final_value = meter.avg
            if str(pred_len) not in name: continue

            # check to see if switch from one class to the other
            if cur_class not in name:
                print_log('', log_file)
                cur_class = name[-3:]
                cur_index = 0

            # print all errors for this class
            if cur_index == 0:
                print_log('%s: ' % name[-3:], log_file, same_line=True)
            print_log('%6.3f  ' % final_value, log_file, same_line=True)
            cur_index += 1

        # print average value
        print_log('', log_file)
        print_log('Ave: ', log_file, same_line=True)
        for metric in ['ADE', 'FDE', 'APD', 'FPD', 'MsR']:
            ave_value = metric_all['%s_%d' % (metric, pred_len)]
            print_log('%6.3f  ' % ave_value, log_file, same_line=True)

        # print end of the logging
        print_log('', log_file)
        print_log('-' * 84, log_file)
    log_file.close()

    # filter out metrics other than len of 20
    output = dict()
    for key, value in metric_all.items():
        if '20' in key:  # only add length of 20 to output metric for EvalAI leaderboard
            output[key] = value
    pprint.pprint(output)  # print output metrics

    return output
Exemplo n.º 13
0
parser.add_argument('--seed', type=int, default=0, help='random seed')
args = parser.parse_args()
torch.backends.cudnn.benchmark = True
prepare_seed(args.seed)

print("Loading options...")
with open('options.toml', 'r') as optionsFile:
    options = toml.loads(optionsFile.read())
args.save_dir = os.path.join(options["general"]["modelsavedir"],
                             args.modelname + '_' + get_timestring())
mkdir_if_missing(args.save_dir)
args.dataset = options["general"]["dataset"]
args.logfile = os.path.join(args.save_dir, 'log.txt')
args.logfile = open(args.logfile, 'w')
# print_log(options, args.logfile)
print_log(args, args.logfile)
print_log('\n\nsaving to %s' % args.save_dir, log=args.logfile)

print_log('creating the model\n\n', log=args.logfile)
if args.modelname == 'C3D_CONV_BLSTM': model = C3D_CONV_BLSTM(args)
elif args.modelname == 'C3D_CONV_BLSTM_frontfix': model = C3D_CONV_BLSTM(args)
elif args.modelname == 'C3D_CONV_CONV': model = C3D_CONV_CONV(args)
elif args.modelname == 'I3D_BLSTM': model = I3D_BLSTM()
elif args.modelname == 'I3D': model = I3D()
elif args.modelname == 'I3D_BLSTM_mini': model = I3D_BLSTM_mini()
elif args.modelname == 'I3D_BLSTM_mini2': model = I3D_BLSTM_mini2()
elif args.modelname == 'I3D_BLSTM_mini3': model = I3D_BLSTM_mini3()

print_log(model, log=args.logfile)
model = reload_model(model, args.logfile, args.path)  # reload model
model = model.cuda()  # move the model to the GPU.
Exemplo n.º 14
0
# model_path = os.path.join(root_dir, 'resnet50_imagenet.pth')    # Path to trained weights file
if train_dataset == 'coco':
    model_path = os.path.join(
        root_dir, 'models/mask_rcnn_coco.pth')  # Path to trained weights file
else:
    assert False, 'error'

model = MaskRCNN(model_dir=save_dir, config=config)  # Create model object.
if config.GPU_COUNT: model = model.cuda()
model.load_weights(model_path)  # Load weights

##--------------------------------- Testing ----------------------------------##
image_list, num_list = load_list_from_folder(images_dir,
                                             ext_filter=['.png', '.jpg'],
                                             depth=2)
print_log('testing results on %d images' % num_list, log=log_file)
count = 1
timer = Timer()
timer.tic()
for image_file_tmp in image_list:
    parent_dir, filename, _ = fileparts(image_file_tmp)
    video_dir = parent_dir.split('/')[-1]
    # print(video_dir)
    # zxc

    image = load_image(image_file_tmp)
    results = model.detect([image])  # inference, results is a dictionary
    if len(results) == 0:
        count += 1
        print_log('Mask-RCNN demo: testing %d/%d, no detected results!!!!!' %
                  (count, num_list),
Exemplo n.º 15
0
    def epoch(self, model, epoch):
        #set up the loss function.
        criterion = model.loss().cuda()
        optimizer = optim.SGD(model.parameters(),
                              lr=self.learningRate(epoch),
                              momentum=self.momentum,
                              weight_decay=self.weightdecay)
        validator_function = model.validator_function()

        print_log('\n\nlearning args: lr, momentum and weight decay are',
                  log=self.log_file)
        for param_group in optimizer.param_groups:
            print_log(param_group['lr'], log=self.log_file)
            print_log(param_group['momentum'], log=self.log_file)
            print_log(param_group['weight_decay'], log=self.log_file)
        # zxc

        #transfer the model to the GPU.
        # if self.usecudnn: criterion = criterion.cuda()
        # startTime = datetime.now()
        print_log("\n\nStarting training...", log=self.log_file)
        sum_loss_so_far, corrects_so_far, sum_samples_so_far = 0., 0., 0.
        for i_batch, (sample_batched, _) in enumerate(self.trainingdataloader):
            optimizer.zero_grad()
            inputs = Variable(sample_batched['temporalvolume']).cuda()
            labels = Variable(sample_batched['label']).cuda()
            # if(self.usecudnn):
            # inputs = inputs.cuda()
            # labels = labels.cuda()

            outputs = model(inputs)
            loss = criterion(outputs, labels.squeeze(1))
            loss.backward()
            optimizer.step()

            # ave_loss_per_batch = loss.item() / float(self.num_frames)           # TODO only true for lstm model
            # ave_loss_per_batch = loss.item() / 7.           # TODO only true for lstm model
            ave_loss_per_batch = loss.item()

            sum_loss_so_far += ave_loss_per_batch * inputs.size(0)
            corrects_per_batch, predict_index_list = validator_function(
                outputs, labels)
            corrects_so_far += corrects_per_batch
            sum_samples_so_far += self.batchsize

            if i_batch == 0: since = time.time()
            elif i_batch % self.statsfrequency == 0 or (i_batch
                                                        == self.num_batches -
                                                        1):
                print_log(
                    '%s, train, Epoch: %d, %d/%d (%.f%%), Loss: %.4f, Accu: %.4f, EP: %s, ETA: %s'
                    % (self.modelname, epoch, sum_samples_so_far,
                       self.num_samples, 100. * i_batch /
                       (self.num_batches - 1), ave_loss_per_batch,
                       corrects_per_batch / float(self.batchsize),
                       convert_secs2time(time.time() - since),
                       convert_secs2time((time.time() - since) *
                                         (self.num_batches - 1) / i_batch -
                                         (time.time() - since))),
                    log=self.log_file)

        ave_loss_per_epoch = sum_loss_so_far / sum_samples_so_far
        ave_accu_per_epoch = corrects_so_far / sum_samples_so_far  # debug: to test the number is the same
        print_log(
            'train, Epoch: {}, Average Loss: {:.4f}, Average Accuracy: {:.4f}'.
            format(epoch, ave_loss_per_epoch, ave_accu_per_epoch) + '\n',
            log=self.log_file)

        print_log("Epoch completed, saving state...", log=self.log_file)
        torch.save(
            model.state_dict(),
            os.path.join(self.modelsavedir,
                         '%s_epoch%03d.pt' % (self.modelname, epoch)))

        return ave_loss_per_epoch, ave_accu_per_epoch
Exemplo n.º 16
0
	vis_dir = os.path.join(save_dir, 'visualization'); mkdir_if_missing(vis_dir)
	log_file = os.path.join(save_dir, 'log.txt'); log_file = open(log_file, 'w')
	bbox_eval_folder = os.path.join(save_dir, 'data'); mkdir_if_missing(bbox_eval_folder)
	mask_dir = os.path.join(save_dir, 'masks'); mkdir_if_missing(mask_dir)
	label_bbox_match_dir = os.path.join(save_dir, 'label_bbox_matching'); mkdir_if_missing(label_bbox_match_dir)
	detection_result_filepath = os.path.join(save_dir, 'mask_results.txt'); detection_results_file = open(detection_result_filepath, 'w')

	##--------------------------------- Model Directory ----------------------------------##
	if train_dataset == 'coco': model_path = os.path.join(root_dir, '../models/mask_rcnn_coco.pth')    			# Path to trained weights file
	elif train_dataset == 'cityscape': model_path = '/media/xinshuo/Data/models/mask_rcnn_pytorch/%s/mask_rcnn_cityscape_%04d.pth' % (model_folder, epoch)
	elif train_dataset == 'kitti': model_path = '/media/xinshuo/Data/models/mask_rcnn_pytorch/%s/mask_rcnn_kitti_%04d.pth' % (model_folder, epoch)
	else: model_path = os.path.join(root_dir, 'resnet50_imagenet.pth')    		# Path to trained weights from Imagenet
	model = MaskRCNN(model_dir=save_dir, config=config)			# Create model object.
	if config.GPU_COUNT: model = model.cuda()
	model.load_weights(model_path)    # Load weights 
	print_log('load weights from %s' % model_path, log=log_file)

	##--------------------------------- Build KITTI Evaluation Results ----------------------------------##
	id_list, num_list = load_list_from_file(split_file)
	print_log('KITTI Evaluation: testing results on %d images' % num_list, log=log_file) 
	count = 1
	timer = Timer(); timer.tic()
	# count_skipped = 0
	for id_tmp in id_list:
		image_file_tmp = os.path.join(images_dir, id_tmp+'.png')
		_, filename, _ = fileparts(image_file_tmp)
		bbox_eval_file_tmp = os.path.join(bbox_eval_folder, filename+'.txt'); bbox_eval_file_tmp = open(bbox_eval_file_tmp, 'w')
		label_matching_file_tmp	= os.path.join(label_bbox_match_dir, filename+'.txt')
		label_matching_file_tmp = open(label_matching_file_tmp, 'w')

		image = load_image(image_file_tmp)
Exemplo n.º 17
0
from validation import Validator
from xinshuo_miscellaneous import get_timestring, print_log
from xinshuo_io import mkdir_if_missing

print("Loading options...")
with open('options.toml', 'r') as optionsFile:
    options = toml.loads(optionsFile.read())
if options["general"]["usecudnnbenchmark"] and options["general"]["usecudnn"]:
    torch.backends.cudnn.benchmark = True
options["general"]["modelsavedir"] = os.path.join(
    options["general"]["modelsavedir"], 'trained_model_' + get_timestring())
mkdir_if_missing(options["general"]["modelsavedir"])
options["general"]["logfile"] = open(
    os.path.join(options["general"]["modelsavedir"], 'log.txt'), 'w')

print_log('saving to %s' % options["general"]["modelsavedir"],
          log=options["general"]["logfile"])

print_log('creating the model', log=options["general"]["logfile"])
model = LipRead(options)

print_log('loading model', log=options["general"]["logfile"])
if options["general"]["loadpretrainedmodel"]:
    print_log('loading the pretrained model at %s' %
              options["general"]["pretrainedmodelpath"],
              log=options["general"]["logfile"])
    model.load_state_dict(torch.load(
        options["general"]["pretrainedmodelpath"]))  #Create the model.
if options["general"]["usecudnn"]:
    model = model.cuda(
        options["general"]["gpuid"])  #Move the model to the GPU.
Exemplo n.º 18
0
    random.seed(args.manualSeed)
    np.random.seed(args.manualSeed)
    torch.manual_seed(args.manualSeed)
    torch.cuda.manual_seed_all(args.manualSeed)
    assert args.dataset == 'coco' or args.dataset == 'cityscapes' or args.dataset == 'kitti', 'wrong dataset name'

    # Configurations
    if args.dataset == 'coco': config = CocoConfig()
    elif args.dataset == 'cityscapes': config = CityscapeConfig()
    elif args.dataset == 'kitti': config = KITTIConfig()
    else: assert False, 'error'
    model = MaskRCNN(config=config, model_dir=args.save_dir)
    if config.GPU_COUNT: model = model.cuda()

    config.display(model.log_file)
    print_log('Seed: %d' % args.manualSeed, model.log_file)
    print_log('Model: %s' % args.model, model.log_file)
    print_log('Dataset: %s' % args.dataset, model.log_file)
    print_log('Save Directory: %s' % args.save_dir, model.log_file)
    if args.model:
        if args.model.lower() == 'imagenet':
            model_path = config.IMAGENET_MODEL_PATH  # Start from ImageNet trained weights
        elif args.model.lower() == 'last':
            model_path = model.find_last()[1]  # Find last trained weights
        else:
            model_path = args.model
    else:
        model_path = ''

    # train and evaluate
    print_log('Loading weights from %s' % model_path, model.log_file)