def print_insn_detail(insn): # print address, mnemonic and operands print("0x%x:\t%s\t%s" % (insn.address, insn.mnemonic, insn.op_str)) # "data" instruction generated by SKIPDATA option has no detail if insn.id == 0: return if len(insn.operands) > 0: print("\top_count: %u" % len(insn.operands)) c = 0 for i in insn.operands: if i.type == PPC_OP_REG: print("\t\toperands[%u].type: REG = %s" % (c, insn.reg_name(i.reg))) if i.type == PPC_OP_IMM: print("\t\toperands[%u].type: IMM = 0x%s" % (c, to_x_32(i.imm))) if i.type == PPC_OP_MEM: print("\t\toperands[%u].type: MEM" % c) if i.mem.base != 0: print("\t\t\toperands[%u].mem.base: REG = %s" \ % (c, insn.reg_name(i.mem.base))) if i.mem.disp != 0: print("\t\t\toperands[%u].mem.disp: 0x%s" \ % (c, to_x_32(i.mem.disp))) c += 1 if insn.bc: print("\tBranch code: %u" % insn.bc) if insn.bh: print("\tBranch hint: %u" % insn.bh) if insn.update_cr0: print("\tUpdate-CR0: True")
def print_insn_detail(insn): # print address, mnemonic and operands print("0x%x:\t%s\t%s" % (insn.address, insn.mnemonic, insn.op_str)) # "data" instruction generated by SKIPDATA option has no detail if insn.id == 0: return if len(insn.operands) > 0: print("\top_count: %u" % len(insn.operands)) c = 0 for i in insn.operands: if i.type == SPARC_OP_REG: print("\t\toperands[%u].type: REG = %s" % (c, insn.reg_name(i.reg))) if i.type == SPARC_OP_IMM: print("\t\toperands[%u].type: IMM = 0x%s" % (c, to_x_32(i.imm))) if i.type == SPARC_OP_MEM: print("\t\toperands[%u].type: MEM" % c) if i.mem.base != 0: print("\t\t\toperands[%u].mem.base: REG = %s" \ % (c, insn.reg_name(i.mem.base))) if i.mem.index != 0: print("\t\t\toperands[%u].mem.index: REG = %s" \ % (c, insn.reg_name(i.mem.index))) if i.mem.disp != 0: print("\t\t\toperands[%u].mem.disp: 0x%s" \ % (c, to_x_32(i.mem.disp))) c += 1 if insn.cc: print("\tCode condition: %u" % insn.cc) if insn.hint: print("\tHint code: %u" % insn.hint)
def print_insn_detail(insn): # print address, mnemonic and operands print("0x%x:\t%s\t%s" % (insn.address, insn.mnemonic, insn.op_str)) # "data" instruction generated by SKIPDATA option has no detail if insn.id == 0: return if len(insn.operands) > 0: print("\top_count: %u" % len(insn.operands)) c = 0 for i in insn.operands: if i.type == ARM_OP_REG: print("\t\toperands[%u].type: REG = %s" % (c, insn.reg_name(i.reg))) if i.type == ARM_OP_IMM: print("\t\toperands[%u].type: IMM = 0x%s" % (c, to_x_32(i.imm))) if i.type == ARM_OP_PIMM: print("\t\toperands[%u].type: P-IMM = %u" % (c, i.imm)) if i.type == ARM_OP_CIMM: print("\t\toperands[%u].type: C-IMM = %u" % (c, i.imm)) if i.type == ARM_OP_FP: print("\t\toperands[%u].type: FP = %f" % (c, i.fp)) if i.type == ARM_OP_MEM: print("\t\toperands[%u].type: MEM" % c) if i.mem.base != 0: print("\t\t\toperands[%u].mem.base: REG = %s" \ % (c, insn.reg_name(i.mem.base))) if i.mem.index != 0: print("\t\t\toperands[%u].mem.index: REG = %s" \ % (c, insn.reg_name(i.mem.index))) if i.mem.scale != 1: print("\t\t\toperands[%u].mem.scale: %u" \ % (c, i.mem.scale)) if i.mem.disp != 0: print("\t\t\toperands[%u].mem.disp: 0x%s" \ % (c, to_x_32(i.mem.disp))) if i.shift.type != ARM_SFT_INVALID and i.shift.value: print("\t\t\tShift: type = %u, value = %u\n" \ % (i.shift.type, i.shift.value)) c += 1 if insn.update_flags: print("\tUpdate-flags: True") if insn.writeback: print("\tWrite-back: True") if not insn.cc in [ARM_CC_AL, ARM_CC_INVALID]: print("\tCode condition: %u" % insn.cc)
def print_insn_detail(insn): # print address, mnemonic and operands print("0x%x:\t%s\t%s" % (insn.address, insn.mnemonic, insn.op_str)) # "data" instruction generated by SKIPDATA option has no detail if insn.id == 0: return if len(insn.groups) > 0: print('\tGroups: ' + ' '.join(map(lambda g: insn.group_name(g), insn.groups))) print("\tOperand count: %u" % len(insn.operands)) for c, op in enumerate(insn.operands): print("\t\toperands[%u].type: " % c, end='') if op.type == BPF_OP_REG: print("REG = " + insn.reg_name(op.reg)) elif op.type == BPF_OP_IMM: print("IMM = " + hex(op.imm)[:-1]) elif op.type == BPF_OP_OFF: print("OFF = +0x" + to_x_32(op.off)) elif op.type == BPF_OP_MEM: print("MEM") if op.mem.base != 0: print("\t\t\toperands[%u].mem.base: REG = %s" \ % (c, insn.reg_name(op.mem.base))) print("\t\t\toperands[%u].mem.disp: 0x%s" \ % (c, to_x_32(op.mem.disp))) elif op.type == BPF_OP_MMEM: print("MMEM = 0x" + to_x_32(op.mmem)) elif op.type == BPF_OP_MSH: print("MSH = 4*([0x%s]&0xf)" % to_x_32(op.msh)) elif op.type == BPF_OP_EXT: print("EXT = " + ext_name[op.ext]) (regs_read, regs_write) = insn.regs_access() if len(regs_read) > 0: print("\tRegisters read:", end="") for r in regs_read: print(" %s" % insn.reg_name(r), end="") print("") if len(regs_write) > 0: print("\tRegisters modified:", end="") for r in regs_write: print(" %s" % insn.reg_name(r), end="") print("")
def print_insn_detail(mode, insn): def print_string_hex(comment, str): print(comment, end=' '), for c in str: print("0x%02x " % c, end=''), print() # print address, mnemonic and operands print("0x%x:\t%s\t%s" % (insn.address, insn.mnemonic, insn.op_str)) # "data" instruction generated by SKIPDATA option has no detail if insn.id == 0: return # print instruction prefix print_string_hex("\tPrefix:", insn.prefix) # print instruction's opcode print_string_hex("\tOpcode:", insn.opcode) # print operand's REX prefix (non-zero value is relavant for x86_64 instructions) print("\trex: 0x%x" % (insn.rex)) # print operand's address size print("\taddr_size: %u" % (insn.addr_size)) # print modRM byte print("\tmodrm: 0x%x" % (insn.modrm)) # print displacement value print("\tdisp: 0x%s" % to_x_32(insn.disp)) # SIB is not available in 16-bit mode if (mode & CS_MODE_16 == 0): # print SIB byte print("\tsib: 0x%x" % (insn.sib)) if (insn.sib): if insn.sib_base != 0: print("\t\tsib_base: %s" % (insn.reg_name(insn.sib_base))) if insn.sib_index != 0: print("\t\tsib_index: %s" % (insn.reg_name(insn.sib_index))) if insn.sib_scale != 0: print("\t\tsib_scale: %d" % (insn.sib_scale)) # XOP CC type if insn.xop_cc != X86_XOP_CC_INVALID: print("\txop_cc: %u" % (insn.xop_cc)) # SSE CC type if insn.sse_cc != X86_SSE_CC_INVALID: print("\tsse_cc: %u" % (insn.sse_cc)) # AVX CC type if insn.avx_cc != X86_AVX_CC_INVALID: print("\tavx_cc: %u" % (insn.avx_cc)) # AVX Suppress All Exception if insn.avx_sae: print("\tavx_sae: TRUE") # AVX Rounding Mode type if insn.avx_rm != X86_AVX_RM_INVALID: print("\tavx_rm: %u" % (insn.avx_rm)) count = insn.op_count(X86_OP_IMM) if count > 0: print("\timm_count: %u" % count) for i in range(count): op = insn.op_find(X86_OP_IMM, i + 1) print("\t\timms[%u]: 0x%s" % (i + 1, to_x(op.imm))) if len(insn.operands) > 0: print("\top_count: %u" % len(insn.operands)) c = -1 for i in insn.operands: c += 1 if i.type == X86_OP_REG: print("\t\toperands[%u].type: REG = %s" % (c, insn.reg_name(i.reg))) if i.type == X86_OP_IMM: print("\t\toperands[%u].type: IMM = 0x%s" % (c, to_x(i.imm))) if i.type == X86_OP_FP: print("\t\toperands[%u].type: FP = %f" % (c, i.fp)) if i.type == X86_OP_MEM: print("\t\toperands[%u].type: MEM" % c) if i.mem.segment != 0: print("\t\t\toperands[%u].mem.segment: REG = %s" % (c, insn.reg_name(i.mem.segment))) if i.mem.base != 0: print("\t\t\toperands[%u].mem.base: REG = %s" % (c, insn.reg_name(i.mem.base))) if i.mem.index != 0: print("\t\t\toperands[%u].mem.index: REG = %s" % (c, insn.reg_name(i.mem.index))) if i.mem.scale != 1: print("\t\t\toperands[%u].mem.scale: %u" % (c, i.mem.scale)) if i.mem.disp != 0: print("\t\t\toperands[%u].mem.disp: 0x%s" % (c, to_x(i.mem.disp))) # AVX broadcast type if i.avx_bcast != X86_AVX_BCAST_INVALID: print("\t\toperands[%u].avx_bcast: %u" % (c, i.avx_bcast)) # AVX zero opmask {z} if i.avx_zero_opmask: print("\t\toperands[%u].avx_zero_opmask: TRUE" % (c)) print("\t\toperands[%u].size: %u" % (c, i.size)) if i.access == CS_AC_READ: print("\t\toperands[%u].access: READ\n" % (c)) elif i.access == CS_AC_WRITE: print("\t\toperands[%u].access: WRITE\n" % (c)) elif i.access == CS_AC_READ | CS_AC_WRITE: print("\t\toperands[%u].access: READ | WRITE\n" % (c)) (regs_read, regs_write) = insn.regs_access() if len(regs_read) > 0: print("\tRegisters read:", end="") for r in regs_read: print(" %s" % (insn.reg_name(r)), end="") print("") if len(regs_write) > 0: print("\tRegisters modified:", end="") for r in regs_write: print(" %s" % (insn.reg_name(r)), end="") print("")
def print_insn_detail(insn): # print address, mnemonic and operands print("0x%x:\t%s\t%s" % (insn.address, insn.mnemonic, insn.op_str)) # "data" instruction generated by SKIPDATA option has no detail if insn.id == 0: return if len(insn.operands) > 0: print("\top_count: %u" % len(insn.operands)) c = 0 for i in insn.operands: if i.type == ARM_OP_REG: print("\t\toperands[%u].type: REG = %s" % (c, insn.reg_name(i.reg))) if i.type == ARM_OP_IMM: print("\t\toperands[%u].type: IMM = 0x%s" % (c, to_x_32(i.imm))) if i.type == ARM_OP_PIMM: print("\t\toperands[%u].type: P-IMM = %u" % (c, i.imm)) if i.type == ARM_OP_CIMM: print("\t\toperands[%u].type: C-IMM = %u" % (c, i.imm)) if i.type == ARM_OP_FP: print("\t\toperands[%u].type: FP = %f" % (c, i.fp)) if i.type == ARM_OP_SYSREG: print("\t\toperands[%u].type: SYSREG = %u" % (c, i.reg)) if i.type == ARM_OP_SETEND: if i.setend == ARM_SETEND_BE: print("\t\toperands[%u].type: SETEND = be" % c) else: print("\t\toperands[%u].type: SETEND = le" % c) if i.type == ARM_OP_MEM: print("\t\toperands[%u].type: MEM" % c) if i.mem.base != 0: print("\t\t\toperands[%u].mem.base: REG = %s" \ % (c, insn.reg_name(i.mem.base))) if i.mem.index != 0: print("\t\t\toperands[%u].mem.index: REG = %s" \ % (c, insn.reg_name(i.mem.index))) if i.mem.scale != 1: print("\t\t\toperands[%u].mem.scale: %u" \ % (c, i.mem.scale)) if i.mem.disp != 0: print("\t\t\toperands[%u].mem.disp: 0x%s" \ % (c, to_x_32(i.mem.disp))) if i.shift.type != ARM_SFT_INVALID and i.shift.value: print("\t\t\tShift: %u = %u" \ % (i.shift.type, i.shift.value)) if i.vector_index != -1: print("\t\t\toperands[%u].vector_index = %u" %(c, i.vector_index)) if i.subtracted: print("\t\t\toperands[%u].subtracted = True" %c) c += 1 if insn.update_flags: print("\tUpdate-flags: True") if insn.writeback: print("\tWrite-back: True") if not insn.cc in [ARM_CC_AL, ARM_CC_INVALID]: print("\tCode condition: %u" % insn.cc) if insn.cps_mode: print("\tCPSI-mode: %u" %(insn.cps_mode)) if insn.cps_flag: print("\tCPSI-flag: %u" %(insn.cps_flag)) if insn.vector_data: print("\tVector-data: %u" %(insn.vector_data)) if insn.vector_size: print("\tVector-size: %u" %(insn.vector_size)) if insn.usermode: print("\tUser-mode: True") if insn.mem_barrier: print("\tMemory-barrier: %u" %(insn.mem_barrier))
def print_insn_detail(insn): # print address, mnemonic and operands print("0x%x:\t%s\t%s" % (insn.address, insn.mnemonic, insn.op_str)) # "data" instruction generated by SKIPDATA option has no detail if insn.id == 0: return if len(insn.operands) > 0: print("\top_count: %u" % len(insn.operands)) c = 0 for i in insn.operands: if i.type == ARM_OP_REG: print("\t\toperands[%u].type: REG = %s" % (c, insn.reg_name(i.reg))) if i.type == ARM_OP_IMM: print("\t\toperands[%u].type: IMM = 0x%s" % (c, to_x_32(i.imm))) if i.type == ARM_OP_PIMM: print("\t\toperands[%u].type: P-IMM = %u" % (c, i.imm)) if i.type == ARM_OP_CIMM: print("\t\toperands[%u].type: C-IMM = %u" % (c, i.imm)) if i.type == ARM_OP_FP: print("\t\toperands[%u].type: FP = %f" % (c, i.fp)) if i.type == ARM_OP_SYSREG: print("\t\toperands[%u].type: SYSREG = %u" % (c, i.reg)) if i.type == ARM_OP_SETEND: if i.setend == ARM_SETEND_BE: print("\t\toperands[%u].type: SETEND = be" % c) else: print("\t\toperands[%u].type: SETEND = le" % c) if i.type == ARM_OP_MEM: print("\t\toperands[%u].type: MEM" % c) if i.mem.base != 0: print("\t\t\toperands[%u].mem.base: REG = %s" \ % (c, insn.reg_name(i.mem.base))) if i.mem.index != 0: print("\t\t\toperands[%u].mem.index: REG = %s" \ % (c, insn.reg_name(i.mem.index))) if i.mem.scale != 1: print("\t\t\toperands[%u].mem.scale: %u" \ % (c, i.mem.scale)) if i.mem.disp != 0: print("\t\t\toperands[%u].mem.disp: 0x%s" \ % (c, to_x_32(i.mem.disp))) if i.mem.lshift != 0: print("\t\t\toperands[%u].mem.lshift: 0x%s" \ % (c, to_x_32(i.mem.lshift))) if i.neon_lane != -1: print("\t\toperands[%u].neon_lane = %u" % (c, i.neon_lane)) if i.access == CS_AC_READ: print("\t\toperands[%u].access: READ\n" % (c)) elif i.access == CS_AC_WRITE: print("\t\toperands[%u].access: WRITE\n" % (c)) elif i.access == CS_AC_READ | CS_AC_WRITE: print("\t\toperands[%u].access: READ | WRITE\n" % (c)) if i.shift.type != ARM_SFT_INVALID and i.shift.value: print("\t\t\tShift: %u = %u" \ % (i.shift.type, i.shift.value)) if i.vector_index != -1: print("\t\t\toperands[%u].vector_index = %u" % (c, i.vector_index)) if i.subtracted: print("\t\t\toperands[%u].subtracted = True" % c) c += 1 if insn.update_flags: print("\tUpdate-flags: True") if insn.writeback: print("\tWrite-back: True") if not insn.cc in [ARM_CC_AL, ARM_CC_INVALID]: print("\tCode condition: %u" % insn.cc) if insn.cps_mode: print("\tCPSI-mode: %u" % (insn.cps_mode)) if insn.cps_flag: print("\tCPSI-flag: %u" % (insn.cps_flag)) if insn.vector_data: print("\tVector-data: %u" % (insn.vector_data)) if insn.vector_size: print("\tVector-size: %u" % (insn.vector_size)) if insn.usermode: print("\tUser-mode: True") if insn.mem_barrier: print("\tMemory-barrier: %u" % (insn.mem_barrier)) (regs_read, regs_write) = insn.regs_access() if len(regs_read) > 0: print("\tRegisters read:", end="") for r in regs_read: print(" %s" % (insn.reg_name(r)), end="") print("") if len(regs_write) > 0: print("\tRegisters modified:", end="") for r in regs_write: print(" %s" % (insn.reg_name(r)), end="") print("")
def print_insn_detail(mode, insn): def print_string_hex(comment, str): print(comment, end=' '), for c in str: print("0x%02x " % c, end=''), print() # print address, mnemonic and operands print("0x%x:\t%s\t%s" % (insn.address, insn.mnemonic, insn.op_str)) # "data" instruction generated by SKIPDATA option has no detail if insn.id == 0: return # print instruction prefix print_string_hex("\tPrefix:", insn.prefix) # print segment override (if applicable) if insn.segment != X86_REG_INVALID: print("\tSegment override: %s" % insn.reg_name(insn.segment)) # print instruction's opcode print_string_hex("\tOpcode:", insn.opcode) # print operand's size, address size, displacement size & immediate size print("\top_size: %u, addr_size: %u, disp_size: %u, imm_size: %u" \ % (insn.op_size, insn.addr_size, insn.disp_size, insn.imm_size)) # print modRM byte print("\tmodrm: 0x%x" % (insn.modrm)) # print displacement value print("\tdisp: 0x%s" % to_x_32(insn.disp)) # SIB is not available in 16-bit mode if (mode & CS_MODE_16 == 0): # print SIB byte print("\tsib: 0x%x" % (insn.sib)) if (insn.sib): if insn.sib_base != 0: print("\t\tsib_base: %s" % (insn.reg_name(insn.sib_base))) if insn.sib_index != 0: print("\t\tsib_index: %s" % (insn.reg_name(insn.sib_index))) if insn.sib_scale != 0: print("\t\tsib_scale: %d" % (insn.sib_scale)) count = insn.op_count(X86_OP_IMM) if count > 0: print("\timm_count: %u" % count) for i in range(count): op = insn.op_find(X86_OP_IMM, i + 1) print("\t\timms[%u]: 0x%s" % (i + 1, to_x(op.imm))) if len(insn.operands) > 0: print("\top_count: %u" % len(insn.operands)) c = -1 for i in insn.operands: c += 1 if i.type == X86_OP_REG: print("\t\toperands[%u].type: REG = %s" % (c, insn.reg_name(i.reg))) if i.type == X86_OP_IMM: print("\t\toperands[%u].type: IMM = 0x%s" % (c, to_x(i.imm))) if i.type == X86_OP_FP: print("\t\toperands[%u].type: FP = %f" % (c, i.fp)) if i.type == X86_OP_MEM: print("\t\toperands[%u].type: MEM" % c) if i.mem.base != 0: print("\t\t\toperands[%u].mem.base: REG = %s" % (c, insn.reg_name(i.mem.base))) if i.mem.index != 0: print("\t\t\toperands[%u].mem.index: REG = %s" % (c, insn.reg_name(i.mem.index))) if i.mem.scale != 1: print("\t\t\toperands[%u].mem.scale: %u" % (c, i.mem.scale)) if i.mem.disp != 0: print("\t\t\toperands[%u].mem.disp: 0x%s" % (c, to_x(i.mem.disp)))
def print_insn_detail(mode, insn): def print_string_hex(comment, str): print(comment, end=' '), for c in str: print("0x%02x " % c, end=''), print() # print address, mnemonic and operands print("0x%x:\t%s\t%s" % (insn.address, insn.mnemonic, insn.op_str)) # "data" instruction generated by SKIPDATA option has no detail if insn.id == 0: return # print instruction prefix print_string_hex("\tPrefix:", insn.prefix) # print instruction's opcode print_string_hex("\tOpcode:", insn.opcode) # print operand's REX prefix (non-zero value is relavant for x86_64 instructions) print("\trex: 0x%x" % (insn.rex)) # print operand's address size print("\taddr_size: %u" % (insn.addr_size)) # print modRM byte print("\tmodrm: 0x%x" % (insn.modrm)) # print displacement value print("\tdisp: 0x%s" % to_x_32(insn.disp)) # SIB is not available in 16-bit mode if (mode & CS_MODE_16 == 0): # print SIB byte print("\tsib: 0x%x" % (insn.sib)) if (insn.sib): if insn.sib_base != 0: print("\t\tsib_base: %s" % (insn.reg_name(insn.sib_base))) if insn.sib_index != 0: print("\t\tsib_index: %s" % (insn.reg_name(insn.sib_index))) if insn.sib_scale != 0: print("\t\tsib_scale: %d" % (insn.sib_scale)) # SSE CC type if insn.sse_cc != X86_SSE_CC_INVALID: print("\tsse_cc: %u" % (insn.sse_cc)) # AVX CC type if insn.avx_cc != X86_AVX_CC_INVALID: print("\tavx_cc: %u" % (insn.avx_cc)) # AVX Suppress All Exception if insn.avx_sae: print("\tavx_sae: TRUE") # AVX Rounding Mode type if insn.avx_rm != X86_AVX_RM_INVALID: print("\tavx_rm: %u" % (insn.avx_rm)) count = insn.op_count(X86_OP_IMM) if count > 0: print("\timm_count: %u" % count) for i in range(count): op = insn.op_find(X86_OP_IMM, i + 1) print("\t\timms[%u]: 0x%s" % (i + 1, to_x(op.imm))) if len(insn.operands) > 0: print("\top_count: %u" % len(insn.operands)) c = -1 for i in insn.operands: c += 1 if i.type == X86_OP_REG: print("\t\toperands[%u].type: REG = %s" % (c, insn.reg_name(i.reg))) if i.type == X86_OP_IMM: print("\t\toperands[%u].type: IMM = 0x%s" % (c, to_x(i.imm))) if i.type == X86_OP_FP: print("\t\toperands[%u].type: FP = %f" % (c, i.fp)) if i.type == X86_OP_MEM: print("\t\toperands[%u].type: MEM" % c) if i.mem.segment != 0: print("\t\t\toperands[%u].mem.segment: REG = %s" % (c, insn.reg_name(i.mem.segment))) if i.mem.base != 0: print("\t\t\toperands[%u].mem.base: REG = %s" % (c, insn.reg_name(i.mem.base))) if i.mem.index != 0: print("\t\t\toperands[%u].mem.index: REG = %s" % (c, insn.reg_name(i.mem.index))) if i.mem.scale != 1: print("\t\t\toperands[%u].mem.scale: %u" % (c, i.mem.scale)) if i.mem.disp != 0: print("\t\t\toperands[%u].mem.disp: 0x%s" % (c, to_x(i.mem.disp))) # AVX broadcast type if i.avx_bcast != X86_AVX_BCAST_INVALID: print("\t\toperands[%u].avx_bcast: %u" % (c, i.avx_bcast)) # AVX zero opmask {z} if i.avx_zero_opmask: print("\t\toperands[%u].avx_zero_opmask: TRUE" % (c)) print("\t\toperands[%u].size: %u" % (c, i.size))
def print_insn_detail(mode, insn): def print_string_hex(comment, str): print(comment, end=' '), for c in str: print("0x%02x " % c, end=''), print() # print address, mnemonic and operands print("0x%x:\t%s\t%s" % (insn.address, insn.mnemonic, insn.op_str)) # "data" instruction generated by SKIPDATA option has no detail if insn.id == 0: return # print instruction prefix print_string_hex("\tPrefix:", insn.prefix) # print instruction's opcode print_string_hex("\tOpcode:", insn.opcode) # print operand's REX prefix (non-zero value is relavant for x86_64 instructions) print("\trex: 0x%x" % (insn.rex)) # print operand's address size print("\taddr_size: %u" % (insn.addr_size)) # print modRM byte print("\tmodrm: 0x%x" % (insn.modrm)) # print modRM offset if insn.modrm_offset != 0: print("\tmodrm_offset: 0x%x" % (insn.modrm_offset)) # print displacement value print("\tdisp: 0x%s" % to_x_32(insn.disp)) # print displacement offset (offset into instruction bytes) if insn.disp_offset != 0: print("\tdisp_offset: 0x%x" % (insn.disp_offset)) # print displacement size if insn.disp_size != 0: print("\tdisp_size: 0x%x" % (insn.disp_size)) # SIB is not available in 16-bit mode if (mode & CS_MODE_16 == 0): # print SIB byte print("\tsib: 0x%x" % (insn.sib)) if (insn.sib): if insn.sib_base != 0: print("\t\tsib_base: %s" % (insn.reg_name(insn.sib_base))) if insn.sib_index != 0: print("\t\tsib_index: %s" % (insn.reg_name(insn.sib_index))) if insn.sib_scale != 0: print("\t\tsib_scale: %d" % (insn.sib_scale)) # XOP CC type if insn.xop_cc != X86_XOP_CC_INVALID: print("\txop_cc: %u" % (insn.xop_cc)) # SSE CC type if insn.sse_cc != X86_SSE_CC_INVALID: print("\tsse_cc: %u" % (insn.sse_cc)) # AVX CC type if insn.avx_cc != X86_AVX_CC_INVALID: print("\tavx_cc: %u" % (insn.avx_cc)) # AVX Suppress All Exception if insn.avx_sae: print("\tavx_sae: TRUE") # AVX Rounding Mode type if insn.avx_rm != X86_AVX_RM_INVALID: print("\tavx_rm: %u" % (insn.avx_rm)) count = insn.op_count(X86_OP_IMM) if count > 0: print("\timm_count: %u" % count) for i in range(count): op = insn.op_find(X86_OP_IMM, i + 1) print("\t\timms[%u]: 0x%s" % (i + 1, to_x(op.imm))) if insn.imm_offset != 0: print("\timm_offset: 0x%x" % (insn.imm_offset)) if insn.imm_size != 0: print("\timm_size: 0x%x" % (insn.imm_size)) if len(insn.operands) > 0: print("\top_count: %u" % len(insn.operands)) c = -1 for i in insn.operands: c += 1 if i.type == X86_OP_REG: print("\t\toperands[%u].type: REG = %s" % (c, insn.reg_name(i.reg))) if i.type == X86_OP_IMM: print("\t\toperands[%u].type: IMM = 0x%s" % (c, to_x(i.imm))) if i.type == X86_OP_MEM: print("\t\toperands[%u].type: MEM" % c) if i.mem.segment != 0: print("\t\t\toperands[%u].mem.segment: REG = %s" % (c, insn.reg_name(i.mem.segment))) if i.mem.base != 0: print("\t\t\toperands[%u].mem.base: REG = %s" % (c, insn.reg_name(i.mem.base))) if i.mem.index != 0: print("\t\t\toperands[%u].mem.index: REG = %s" % (c, insn.reg_name(i.mem.index))) if i.mem.scale != 1: print("\t\t\toperands[%u].mem.scale: %u" % (c, i.mem.scale)) if i.mem.disp != 0: print("\t\t\toperands[%u].mem.disp: 0x%s" % (c, to_x(i.mem.disp))) # AVX broadcast type if i.avx_bcast != X86_AVX_BCAST_INVALID: print("\t\toperands[%u].avx_bcast: %u" % (c, i.avx_bcast)) # AVX zero opmask {z} if i.avx_zero_opmask: print("\t\toperands[%u].avx_zero_opmask: TRUE" % (c)) print("\t\toperands[%u].size: %u" % (c, i.size)) if i.access == CS_AC_READ: print("\t\toperands[%u].access: READ\n" % (c)) elif i.access == CS_AC_WRITE: print("\t\toperands[%u].access: WRITE\n" % (c)) elif i.access == CS_AC_READ | CS_AC_WRITE: print("\t\toperands[%u].access: READ | WRITE\n" % (c)) (regs_read, regs_write) = insn.regs_access() if len(regs_read) > 0: print("\tRegisters read:", end="") for r in regs_read: print(" %s" %(insn.reg_name(r)), end="") print("") if len(regs_write) > 0: print("\tRegisters modified:", end="") for r in regs_write: print(" %s" %(insn.reg_name(r)), end="") print("") if insn.eflags: updated_flags = [] for i in range(0,46): if insn.eflags & (1 << i): updated_flags.append(get_eflag_name(1 << i)) print("\tEFLAGS: %s" % (','.join(p for p in updated_flags)))