Exemplo n.º 1
0
            'last_branch': 1, 'last_down': True, 'last_expand': 0,
            'poolmode': 'avg', 'active': 'relu', 'summer': 'split', 'nclass': 10,
            'afisok': False, 'afkeys': ('af1', 'af2'), 'convon': True,
            'convlayers': 1, 'convdepth': 4}

    wv2s = {'stages': 2, 'rock': 'Q', 'branch': 3, 'indepth': 24, 'growth': 12, 'multiway': 4,
            'layers': (3, 3, 0), 'blocks': ('D', 'D', '-'), 'bottle': (3, 3, 3), 'classify': (0, 0, 0),
            'trans': ('A', 'A', '-'), 'reduction': (0.5, 0, 0),
            'last_branch': 1, 'last_down': True, 'last_expand': 0,
            'poolmode': 'avg', 'active': 'relu', 'summer': 'split', 'nclass': 10,
            'afisok': False, 'afkeys': ('af1', 'af2'), 'convon': True,
            'convlayers': 1, 'convdepth': 4}

    wv3s = {'stages': 3, 'rock': 'Q', 'branch': 3, 'indepth': 24, 'growth': 12, 'multiway': 4,
            'layers': (10, 10, 10), 'blocks': ('D', 'D', 'S'), 'bottle': (0, 0, 0), 'classify': (0, 0, 0),
            'trans': ('A', 'A', 'A'), 'reduction': (0.5, 0.5, 0),
            'last_branch': 1, 'last_down': False, 'last_expand': 10,
            'poolmode': 'avg', 'active': 'relu', 'summer': 'split', 'nclass': 10,
            'afisok': False, 'afkeys': ('af1', 'af2', 'af3'), 'convon': True,
            'convlayers': 1, 'convdepth': 4}

    model = WaveNet(**wv3s)
    print('\n', model, '\n')
	out = model(torch.randn(4, 3, 32, 32))

    # utils.tensorboard_add_model(model, x)
    xtils.calculate_params_scale(model, format='million')
    xtils.calculate_FLOPs_scale(model, input_size=32, use_gpu=False, multiply_adds=False)
    xtils.calculate_layers_num(model, layers=('conv2d', 'deconv2d', 'fc'))
    xtils.calculate_time_cost(model, insize=32, toc=3, use_gpu=False)
Exemplo n.º 2
0
    model = MultiScaleNet(**ms6)
    print(model)

    model.set_train_which(part=['bone+mhead', 'auxhead', 'summary'][2],
                          name_which='head-8-2-2@6')
    # model.set_eval_which(part=['bone+mhead', 'bone+mhead+auxhead', 'bone+mhead+auxhead+summary'][1])
    # paramsx = [p for p in model.parameters() if p.requires_grad]
    #
    # model.set_train_which(part=['bone+mhead', 'auxhead', 'summary'][0])
    # paramsy = [p for p in model.parameters() if p.requires_grad]
    #
    # share = list(set(paramsx).intersection(set(paramsy)))

    insize = [32, 224][model.dataset == 'imagenet']
    x = torch.randn(1, 3, insize, insize)
    z = model(x)
    print('z-->', len(z), '\n')

    xtils.calculate_layers_num(model)
    xtils.calculate_FLOPs_scale(model,
                                input_size=insize,
                                use_gpu=False,
                                multiply_adds=False)
    xtils.calculate_params_scale(model, format='million')
    xtils.calculate_time_cost(model,
                              insize=insize,
                              toc=1,
                              pritout=True,
                              use_gpu=False)
Exemplo n.º 3
0
# def test():
#     net = MobileNetV3_Small()
#     x = torch.randn(2, 3, 224, 224)
#     y = net(x)
#     print(y.size())

# test()

if __name__ == '__main__':
    import xtils, os

    model = [MobileNetV3_Large(), MobileNetV3_Small()][0]
    print('\n', model, '\n')

    ckpt = ['mobilev3_x_large.pth.tar', 'mobilev3_x_small.pth.tar'][0]
    ckpt = os.path.join('/data/zhangjp/PreTrainedModels', ckpt)
    model = xtils.load_ckpt_weights(model,
                                    ckptf=ckpt,
                                    device='cpu',
                                    mgpus_to_sxpu='m2s')

    # utils.tensorboard_add_model(model, x)
    xtils.calculate_params_scale(model, format='million')
    xtils.calculate_FLOPs_scale(model,
                                use_gpu=False,
                                input_size=224,
                                multiply_adds=True)
    xtils.calculate_layers_num(model, layers=('conv2d', 'deconv2d', 'fc'))
    xtils.calculate_time_cost(model, insize=224, use_gpu=False)
Exemplo n.º 4
0
    import xtils, time, random

    seed = [2019, time.time()][0]
    random.seed(seed)
    torch.manual_seed(seed)

    # # # ImageNet
    model = XResNet(**xresnet_imgnet)
    print(model)
    xtils.calculate_layers_num(model,
                               layers=('conv2d', 'deconv2d', 'classifier'))
    xtils.calculate_FLOPs_scale(model,
                                input_size=224,
                                multiply_adds=True,
                                use_gpu=False)
    xtils.calculate_params_scale(model, format='million')
    xtils.calculate_time_cost(model,
                              insize=224,
                              toc=1,
                              use_gpu=False,
                              pritout=True)

    # CIFAR10 & CIFAR100
    #
    # model = XResNet(**xresnet_cifar100)
    # print(model)
    # utils.calculate_layers_num(model, layers=('conv2d', 'classifier'))
    # utils.calculate_FLOPs_scale(model, input_size=32, multiply_adds=True, use_gpu=False)
    # utils.calculate_params_scale(model, format='million')
    # utils.calculate_time_cost(model, insize=32, toc=3, use_gpu=False, pritout=True)